
CESYS522: Developing System Requirements
Cornell University College of Engineering

© 2018 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners.

	

1	

Developing Your System Requirements
Use Case Behavioral Diagrams

Knowing your stakeholder’s perspectives, the context in which your system must
operate within, and the use case scenarios that your System must accomplish begins to
establish what parameters you will have to design to. But what truly defines your system
is what functions it must perform in order to successfully accomplish these use cases. If
you’re able to formalize these functional requirements, you have created a technical
definition of what any valid solution to your problem must do. Thereby you have also
taken a critical step towards enabling every designer to both understand what your
system must accomplish while still allowing them the opportunity to still showcase their
talents at developing a creative and valued solution towards meeting these
requirements.

This guide helps you analyze the use cases and formally determine functional
requirements that are required of any valid solution to the challenge you are trying to
solve. More so, this guide also shows how this process can indicate functions you will
want to measure the performance of and introduce techniques for brainstorming how
you can measure that performance objectively. Once you have taken these steps you
will have a far greater understanding of what it is you must achieve and you will be able
to create a far more successful, complete, and efficient solution than you would have
been able to otherwise.

Before you begin: (You can think of this as Step 0) If you haven’t done so already,
consider who are your stakeholders. Stakeholder is a catch-all term used to define
those who have any influence on what/how you design something but is better to be
thought of as anyone or anything your design affects. You can think of those affected as
primary stakeholders or secondary stakeholders. For the primary stakeholders, think
about they will need your system to do (or not do). If you are working with a specific
client, you will also want to define your client's deliverables. For secondary
stakeholders, who may not be directly associated with using you system but are
strongly influenced by it or its outcomes, you need to make sure you aren’t accidentally
violating any of these stakeholders’ needs,

Step 0 is Complete When: you have defined your stakeholders and your system's
context and interfaces, have prepared a list of use cases to explore, and (if applicable)
have a defined list of deliverables for a specific client(s).

Step 1: Rate your use cases to the best of your current knowledge as to which ones are
the most important. A typical rating system is simply to rate them as High, Medium, and
Low priority. Higher priority ones are use cases that may

• Directly address stakeholder’s primary needs
• Can have a significant influence on the performance of your system

CESYS522: Developing System Requirements
Cornell University College of Engineering

© 2018 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners.

	

2	

• Address situations that are considered to be high risk, including use cases that
focus undesired occurrences.

• You anticipate your System will be required to perform complex and important
tasks

• Occur very frequently

There may be other reasons as well and you most likely have not formally defined what
constitutes “high risk” or established all of ways your System’s performance, and there
by value, could be evaluated, but at this point, that’s okay. From what you do know or
would assume at this point, do you best to at least identify your higher priority use
cases. You can always decide to change these priorities later but this is just to give you
a starting point.

Step 1 is Complete When: You have prioritized your use cases in some way that
identifies which use cases you currently consider to be the higher priority.

Step 2: Select one of your higher priority use cases to explore further by starting to
create a use case behavioral diagram (a.k.a. use case matrix, use case swimlane
diagram, use case activity diagram). A use case behavioral diagram (abbreviated as
UCBD in this guide) is a way to describe step by step what your System must
functionally do and what other objects/users/etc are doing during that use case.

The file UseCaseBehavioralDiagramExample.pptx is provided to help demonstrate how
one might complete a UCBD for a toy catapult-like System use case called “Child uses
toy catapult”. This use case is fairly high level and generic, but for a simple toy catapult
it’s sufficient for demonstrating the UCBD process.

For now, copy the template in the first tab of the sample and change the name label in
the upper left hand corner to your use case name.

Step 2 is Complete When: You have copied the template or created a similar UCBD
set-up and have labeled it with your use case name.

Step 3: To begin creating your USBD, determine who/what are the main actors involved
in this use case. Actors is a generic term in USBDs used to typically mean anything that
interacts with your System. Many of the items in your Context Diagram can be
considered actors.

You main actor(s) are commonly human operators/users but perhaps could be another
machine that is sending commands to your System. A main actor is also sometimes
thought of as the source of the triggering or perhaps guiding input to the use case. In
the example, the Child is the main actor whose actions and needs drive the System to
have to be able to do something.

Label a separate column for each actor and one for your System. Traditionally, the main
actor(s) are placed in columns to the left of your System’s columns. Other actors’

CESYS522: Developing System Requirements
Cornell University College of Engineering

© 2018 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners.

	

3	

columns are thereby placed to the right of your System’s column. These columns are
sometimes also called swimlanes as also mentioned in Step 6.

Step 3 is Complete When: You have created a separate column for each actor and
one for your System according to the guidelines given above.

Following standard guidelines like this make it far easier for someone else (or even
yourself year’s later) be able to pick up your UCBD and quickly gain information from
just the way its formatted, such as who is considered to be the main actor(s).

Step 3a: Jot down “Notes” as you go through the UCBD process to help provide the
reader insights on any possible misconceptions. For example, one might think that the
projectile is considered part of your System since many similar toys do come with their
own ammunition. However, for our example System, the catapult-like System should be
designed to work with a variety of other child safe toys as projectiles that are not part of
your System design scope. Hence, the projectile is also considered an actor with its
own column and not part of your System. (think of the situation where you would be
design a new Nerf blaster; you wouldn’t get to design the Nerf dart. That’s already
standardized, and since it’s outside of your design scope, it would be listed as a
separate column.)

We also assume that the projectile is something relatively safe and not, for example, a
pet gerbil. Hence we will limit our UCBD to discuss only those cases where the
projectile is a child safe toy.

To inform the reader of assumptions like these, the bottom of the UCBD is reserved to
list notes for the reader. Notes are often written informally but each one is numbered so
that they can be easily referenced later on.

Step 3a is Complete When: You have added a notes section to your UCBD and any
notes you think the reader may need. You may continue onto other Steps and/or return
back to this Step as you need throughout your UCBD process.

Step 3b: Be sure to create one, and only one, column for your System. Do not split your
System into subsystems at this stage. This is done to help you stay with the concept
that your System is not yet defined and you want to stay in that professional designer
mindset that your System is not yet “named” and could still be anything so long as it
meets all of the identified needs and functions well. And since we’re in the process of
identifying these functions, it’s best to keep your System as just your System.

Yes, in the example we have already called our system a toy-catapult but that was done
partially so it is easier for the reader to jump in at this stage of the design and follow the
USBD process, but it’s also professionally okay at this stage of design to use a
placeholder idea for your System, recognizing all too well that you may very well have to
through away that placeholder idea later in your design.

CESYS522: Developing System Requirements
Cornell University College of Engineering

© 2018 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners.

	

4	

Step 3b is Complete When: You have one and only one column for your System in
your UCBD.

If necessary, you have accepted a placeholder concept to start your UCBD process,
accepting fully that you may need to redo significant parts of your UCBDs if you later
had to go in a different direction and the placeholder concept was discovered to make
your UCBD’s too specific to that placeholder concept.

Step 4: Establish what are the starting conditions for your use case. In the example, the
starting conditions are simple: “System is in the unloaded state”, meaning simply that
the catapult hasn’t been loaded yet. There are no significant conditions that need to be
stated for the other actors for the use case to begin. Yes, you could state that the Child
and projectile need to be in close proximity to your System but you have to decide
whether that information needs to be specifically stated.

You may have a starting condition, or even multiple starting conditions, for each actor
and your System. Sometimes a starting condition is described as being that another use
case has been successfully (or unsuccessfully) completed.

Step 4 is Complete When: you have established a starting condition(s) for your use
case and listed it in your UCBD.

Step 5: Establish what are the ending conditions for your use case. In the example, the
ending conditions are the same as the starting conditions: “The System is in the
unloaded state”. This doesn’t have to be the case, but think of the ending conditions as
being how your use case scenario should end. It’s typically in a fairly stable state or it
could be in transition as perhaps the stating conditions for another use case.

Step 5 is Complete When: you have established the ending condition(s) of your use
case.

Step 6: Explain what must functionally occur from your use case’s starting condition to
its ending condition. Often, but not always, the use case begins with some kind of a
trigger action that will cause your System to do something. Often this trigger is initiated
by the main actor as is done in the example.

Actions done by any of the actors are typically written in a slightly less formal way,
simply stating what is occurring. What your System should do however should be
written very formally as functional requirements. Below is an in-depth description of how
to write good functional requirements and the later steps help provide explanations as to
how to delve into functional requirements to truly define your System.

For now, notice in the example the following rules for this part of the UCBD process:

• Actor actions and formal requirements, referred to generically as statements,
should be written in a chronological order from the starting to the ending
condition

CESYS522: Developing System Requirements
Cornell University College of Engineering

© 2018 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners.

	

5	

• Each statement must be written in the column corresponding to the actor or your
System who is primarily responsible for that statement, aka the actor’s or your
System’s swimlanes.

• Each statement should be written in its own separate row; no row should have
more than one statement in that row.

• The area where the statements are written in the UCBD is sometimes referred to
as the UCBD body.

Writing formal requirements is in essence fairly easy to do, however writing good
requirements that can be of the most help to you is something that requires more
thought and practice. Furthermore, when many people start writing requirements it’s
even difficult for them to tell the difference between a good requirement and a great
one. Read through the example UseCaseBehavioralDiagramExample.xlsx and then the
section below on Functional Requirements to help you create more meaningful and
valuable requirements. Then create your own first pass at filling out the UCBD body.

Step 6 is Complete When: you have a series of actor statements and System
requirements that describe what must occur and the functionality your System must
provide/perform in order to advance from the use case’s starting condition to the use
case’s ending condition.

Tips For Requirement Writing

Functional Requirements: When writing functional requirements, it’s not about what
your System does, it’s about the functionality that’s needed to be able to do it.

At face value the difference seems minute. As simple example, in describing the toy
catapult use case, one might say “The System fires the projectile”, but the way to write
this idea as a proper functional requirement is to say “The System shall be able to fire
the projectile”. What’s the real difference? Not much at first, but then we ask “well if the
System has to be able to do this, what else must it do?…” the benefit of thinking
functionally begins to become apparent.

Well, if it’s going to be able to fire the projectile, the System…

• shall be able to hold the projectile until launch
• shall be able to be triggered by the user
• shall be able to eject the projectile from itself, etc.

As you continue to brainstorm, you begin to realize all that your System has to
accomplish, some of which may not have been as evident at first. Before it was all just
gonna do it somehow, but now you know you have to design something that works
together to perform all these functions and all the functions of your other use cases that
you’ll discover. The more you discover, the more clear it will be what you have to design
for. And if you know more clearly what is all that you have to design for, the better you
have defined your overall challenge better, and the better you will be able to solve that
challenge.

CESYS522: Developing System Requirements
Cornell University College of Engineering

© 2018 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners.

	

6	

More information on the formal rules for writing requirements is given in Step 10. You
may want to review that Step now, and then read it again later as you review your work
at the end.

Delving Into Functional Requirements: Taking another example to show how this act
of delving into the functional needs can lead to more significant insights, imagine that
this time you were designing some kind of robotic arm. One requirement you could see
being part of a UCBD might be: “The System shall be able to pick up the target object
on the desk”.

As you delve into what is necessary to perform this requirement, you discover a large
number and variety of additional requirements including:

• The System shall be able to identify the target object apart from other objects*
• The System shall be able to determine location of the target object in 3D space*
• The System end effector shall be able to conform to target object shape well

enough to lift the target object**
• The System end effector shall not damage the target object**
• The System shall determine the proper arm angles in order to pick up the target

object***
• The System shall be able to calculate a path of motion***
• The System shall be able to avoid obstacles in reaching for the target object***

And these could be delved into even further, for example, the last requirement could
inspire more requirements itself such as:

• The System shall be able to detect obstacles*
• The System shall be able to determine the location of obstacles in 3D space*

And the list could go on. But even taking it this far reveals that there are a lot of different
kinds of functionality going on to achieve that one initial requirement. This can inform
you that you may want to split your original use case into several; for example, the
requirements labeled with a single, double and triple asterixes may want to be made
part of their own new use cases which could be:

* “System identifies objects”
** “System grabs target object”
*** “System changes position”

This will allow you to explore each use case further to see if there are any additional
functional requirements to consider in your design. Furthermore, it also helps you begin
to recognize more precisely what you need to do. You recognize now this might involve
a significant sensor if not a computer vision sub-problem. You’ll similarly expect to have
to do significant mechanical modeling of your system and probably work with inverse
kinematic equations and controller designs. You may also realize this is a lot of work
and it will inspire you to come up with a different way to meet your customer needs.

CESYS522: Developing System Requirements
Cornell University College of Engineering

© 2018 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners.

	

7	

Either way, overall you are beginning to get a better sense of the possible scope of work
and skills needed to be a success.

Also notice that even though some of the requirements marked with a * were discovered
by delving into the later ***requirements, we decided to group these * requirements
together. This informs you as a designer that instead of just focusing on identifying the
target object, you now might consider trying to create something more generic to
identify other objects. Had you not explored your functional requirements first, you may
have begun working on a more optimized solution to find just the target object. And then
when you learned later on that you also had to handle detecting other objects you may
have had a lot of rework to do, “Man, if I had only known that was part of the problem
from the start, I would have done things completely differently.”

This is just one example, but hopefully begins to hint at the value of developing your
System functionally first.

Discovering Performance Criteria through Functional Requirements: As part of
discovering the functionality your System must achieve, you may also realize that it’s
not just a matter of “what” it has to do, but it can make a significant impact on “how well”
your system does it.

Take for example the final functional requirement in the toy catapult example: “The
system shall eject the contents of the receptacle.” If presented with a number of toy
catapults you might judge them on how fast the projectile flies, and how far the projectile
flies. Hence launch velocity and launch distance could be considered 2 performance
criteria.

Measuring these 2 criteria might be fairly straight forward but sometimes coming up with
objective ways to measure identified criteria is not as simple. For instance, in the robotic
arm example above you could imagine performance criteria such as:

• The rate at which the arm move
• The time it takes to move the target object from initial command to completion
• The time it takes to recognize objects
• The accuracy at which it identifies the target object.
• How smoothly the arm moves, etc.

Recognizing the performance criteria is very important for informing how you develop
your design. But here you’ll also have to objectively define the way you measure
“accuracy” and “smoothly”. Accuracy might be measured by how often the target object
is found correctly, missed, or reported incorrectly and may involve establishing a series
of test scenarios that represent that various situations you may encounter. “Smoothly”
might be objectively measured by a combination of: variation from an expected motion
path, and/or the maximum, average, and standard deviation of acceleration measured
from the end effector, and/or dissipation of residual vibration after a motion has
completed, etc. The way you objectively measure your performance criteria is call a
performance metric. (The Decision Matrix Guide and Performance Criteria Tips for

CESYS522: Developing System Requirements
Cornell University College of Engineering

© 2018 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners.

	

8	

Deliverables and Decision Matrices Guide provide more detailed information on
performance criteria and how to use them well in your design process)

As part of establishing your measures and exploring your System functionality, it’s also
good to ask ‘why?’ you care about a particular function. As another example, imagine
you were designing a car-like system. You could then envision that you may at some
point some up with the requirement: “The System shall minimize fuel consumption.” But
why is this functionality important? Is it to:

• minimize the cost of operation
• minimize the environmental impact
• minimize the fuel storage space
• minimize the weight of the System
• maximize the travel distance
• maintain a competitive level with competitors

The answer may be all of the above, but probably not all of them are equally important
objectives. Hence you’ll develop an even better design if you can not only figure out the
functionality you need to achieve, but why that functionality is important, and how are
you going measure all of those aspects together to estimate your overall design’s
performance. Ask yourself, how do you measure your performance in any of the use
cases and how will that influence your design? Even more generally if there’s a
functionality or idea that you like, why do you like it? You may even return to discovering
you need additional functions; in toy catapult example, you might recognize that if the
launch velocity increases too greatly, safety is a concern. Safety is functionality and a
performance criteria that you will need to consider as well.

Step 7: Review your use cases for missed functionality and performance criteria. It’s
rare that even the most experienced professional designer will think of all of the key
functions or delve far enough on your first try. So it’s quite common that your first pass
at a UCBD might be pretty short and rather high level. Go over it again, and maybe
again after that and keep asking questions like:

• “Well if the System has to be able to do this, what else must it do?…”
• “Are there other functions that are occurring at the same time?…”
• “If I asked a contractor to create something that just performed the functions I

wrote and nothing else, would I be confident that what I got back would be able
to meet all of needs associated with this use case?…”

These are tough questions but continue with them until you feel you can functionally
define what any System has to be to meet the needs of this use case. When you have
reached that point (and perhaps done this for a number of uses cases) you may find
that you begin question many of your previous assumptions, even ones like, “Does it
really need to be a catapult?. Could there other ways to meet the requirements above?”
Taken together, anything that meets the collection of requirements across your use

CESYS522: Developing System Requirements
Cornell University College of Engineering

© 2018 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners.

	

9	

cases is a valid solution. It is only through creating more functional requirements, that
what the System should be begins to take shape.

Step 7 is Complete When: you have reviewed your use cases and requirements using
the questions provided here and the delving tips suggested previously, refining or
adding any additional requirements to your UCBD.

Step 8: Review your use case one last time for any additional performance criteria and
ideas on how to measure them.

Step 8 is Complete When: You have identified performance criteria that could evaluate
the value of any solution’s ability to handle this use case.

Step 9: Repeat Steps 2-8 for your remaining high priority use cases and some of your
medium or even low priority uses cases. You most likely do not have the time to create
UCBD for all of your use cases. So when trying to choose which lower priority use
cases to explore, try to select the ones that you think will involve different kinds of
functionality and set different kinds of requirements for your System than those you
have already declared.

It’s perfectly fine to set additional requirements for your System, even if they aren’t
directly from one of your UCBD but you know it’s still an important function that would
probably have shown up in one of your UCBDs if you had time to create UCBD for all of
your uses cases. In these cases though, it is at least good to record where the
inspiration for the requirement came from. This is done in case, for example, the source
inspiration changes; you will then know to either alter or eliminate that requirement from
your list of requirements overall.

Step 9 is Complete When: You have a list of functional requirements that define the
functionality that your System must achieve.

Step 10: As writing requirements is considered as a corner stone of professional design
by many, use the following traditional 12 properties and guidelines for writing
requirement as a check.

Requirements should be:
1. Written as Shall Statements
2. Correct: what you’re saying is accurate
3. Written as Shall Statements
4. Clear & Precise: only 1 idea / requirement. If you have the word “and” or similar

conjunction in your requirements, it’s considered better to split the requirement
into 2.

5. Written as Shall Statements
6. Unambiguous: only one way interpret
7. Written as Shall Statements
8. Objective: non-opinionated
9. Written as Shall Statements

CESYS522: Developing System Requirements
Cornell University College of Engineering

© 2018 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners.

	

10	

10. Verifiable: there is some measureable way you could say this requirement is met
11. Written as Shall Statements
12. Consistent: does not contradict another requirement

If you haven’t noticed, writing your functional requirements as shall statements
(meaning that the word shall is used in the requirement, as in “The System shall do X”),
is kinda a big deal to a lot of professional designers – in fact many agencies will not
accept requirements written any other way, despite how good the ideas behind them
are. But it’s the other concepts are truly important for developing your system’s
requirements.

Step 10 is Complete When: You are confident that your requirements are written in a
professional manner.

Step 10a: In reviewing your requirements, you may have noticed that it would be hard
to objectively verify whether a requirement is met or not in your end system. From our
catapult example, the requirement “The system shall be able to store the energy input
from the operator” as written actually it states that the system will accept & store ALL
energy possibly input by the operator (even if they jumped on it). To make this more
realistic, easier for an engineer to later design to, and to be testibly verifiable, we can
add a maximum threshold of energy to be stored. But what if we don’t know what a
good threshold should be yet?

This is a common situation to arise and to handle this we can use requirement
constants. Like constants you might write in an equation or a computer program, they
are terms use to represent a value. In our example, we might re-write the requirement
as “The system shall be able to store the energy input from the operator up to
MaximumEnergyInput” where MaximumEnergyInput is the constant name. Notice that
we choose a constant name that captures the spirit of what the constant represents and
its okay to have long names rather than something generic like “x1” because once you
have hundreds maybe thousands of requirements, its hard to remember what x1 vs. x2
vs. x3 really means. It is also common to write the constant as all one word, sometimes
using capitalization to distinguish words within the overall constant name (similar to the
idea of camelCase)

To keep track of all of your constants and to define their values, you should also create
a Requirement Constant Table. There are many forms of Requirement Constant Tables
but as shown in the example, a good one should at least include the:

• Name of the constant
• Value of the constant
• Units of the constant value
• Source of information for why this value was chosen

As it can be common that requirement constants may be updated throughout the design
process additional information could include:

CESYS522: Developing System Requirements
Cornell University College of Engineering

© 2018 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners.

	

11	

• Whether the current value is an estimate or not
• The date when the value was last updated
• Which team member made the update
• When is the estimated expected to be updated next
• When is the final value due

Step 10a is Complete When: You have used requirement constants to improve upon
your requirements, especially along the lines of the rules stated in Step 10. The addition
of a requirement constant in our example has not only made the requirement more
realistic but testibly verifiable. It will also be easier for an engineer to later make a
design to meet this requirement as they now know how much energy the system should
store.

Step 11: As a final check make sure that you’ve written your functional requirements
“Functionally, not structurally.” This will become natural in time but when you are
starting out below are a few comparisons that may be helpful.

Thinking Functionally is about: Thinking Structurally is
about:

What is the need that has to be met How you are going to meet
that need

What something must be able to do How are you going to do it
How should various systems interact with each other,
(i.e. what must each subsystem be able to do)

The implementation that
handles the interaction

How do you measure your performance The actual solution’s
performance

Anything that can meet this description is a valid
solution

A very specific solution

Step 11 is Complete When: you have checked all of your requirements to make sure
they are written functionally not structurally to help ensure you are not artificially
constrained as to what your System must structurally be but are open to creatively think
about possible solutions that could meet your challenge’s functional needs.

The use case behavioral diagram (UCBD) gives you some idea as to how your System
has to do all of these things together. There are other techniques such as creating
Functional Flow Block Diagrams (FFBD), IDEF-0, and Operational Description
Templates (ODT) some of which can also help you to tie use cases together, break your
System into subsystems, and identify key interfaces between them (also see the
Interface Tracking Guide, because if there’s one place systems fail, its usually at the
interfaces). These are outside the scope of this guide and we’d recommend that you
start with an FFBD if you’re interested in exploring this further. But either way, you are in
a far better place to discuss and work on your design as a team towards a better
defined System solution for your challenge.

CESYS522: Developing System Requirements
Cornell University College of Engineering

© 2018 eCornell. All rights reserved. All other copyrights, trademarks, trade names, and logos are the sole property of their respective owners.

	

12	

	

