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Fig. 1.1. A hut in Africa for 

mobile phone connectivity 
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Chapter 1: Review of electromagnetic theory and resonator circuits 
 

    
 

 
Reading Assignments: 

 

1. Lectures 2, 3, 20, 21 and 22 of ECE 3030 notes 

2. T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, 2nd Ed, Cambridge, 2004. 

Chap. 3 

 

Logic Flow: 

 

Topics for electromagnetic review: 

 

 Maxwell equations in free space 

 Guided waves and transmission lines 

 Distributive waveguides and lumped-element discrete transmission line representations 

 Smith Chart for reflection coefficients and impedance 

 Stub lines for impedance matching 

 

Topics for resonator review: 

 

 LC resonator for impedance analysis 

 Conjugate impedance match 

 Quality factor and bandwidth of resonators 

 

1.1 Maxwell equations in free space 

 

We have been witnessing the wireless communication revolution in 

the last 30 years when smart phones have penetrated deep into the 

business and personal worlds.  From the early days of satellite 

phones to today’s Pokémon-Go, mobile personal units have 

changed lifestyles, if not life goals, for many people regardless of 

race, origin, and economical prosperity.  In countries where the 

electrical power network has not yet set up, mobile network with 

solar-power base stations is often already available!  The revolution 

has NOT finished though.  With more automation from robots and 

social connectivity from Facebook and Uber, you will see mobile 

applications continue to bloom for the next 50 years. 

 

Do you wonder how “data” and “information” can come through 

the air?  How can so many people share the “same free space” and information knows where to go?  The 

magic lies in the electromagnetic (EM) wave propagation!  Before we go any further, remember that EM 
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waves do go to most places (including where you may not want them) and everyone shares the free space.  

Needless to say, regulation has to be set up for safety and sharing, not to mention many concerns for 

security and privacy! 

 

We will start from the simplest model of EM wave propagation in air.  For any wave propagation, we will 

look for the ratio of the second derivatives in time and space to be proportional with a constant v2, where 

v is the propagation velocity. For example, for a 1D wave (3D can have more degrees of freedom) 

propagating in x with velocity v in the positive or negative x direction, the equation will look like: 
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From the Maxell equations: 
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In free space, we have: 0 J


  
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By using the vector identity:     FFF


2 , we can have the general 3D EM wave 

propagation equation as (in free space 0 E


) 
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or in scalar form of the electric field in the Cartesian coordinates: 
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1.2 Plane waves and the corresponding transmission line 

 

If we now invoke the plane wave1 assumption, i.e., Ey = Ez = 0 and 
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 , i.e., Ex = Ex(z, t). (1.7) 

 

One of the possible traveling wave solutions can be expressed as:  
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where we define the angular frequency f
c





 2

2
 and wavevector 



2
k .  We can derive the 

magnetic field as: 
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o is the impedance of the free space at 377.  The plane wave with E in the x direction and H in the y 

direction, propagating in the z direction can be visualized in Fig. 1.2. 

 

The result can be generalized for a 3D plane wave travelling in the k


 direction as:  
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1 Traveling plane waves in free space have the simplest form, but other waves are also commonly used, including 

the circular polarized waves. 
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We can make a few observations from the above derivation: 

 

1. The plane wave solution is made by the assumptions of a specific functional form.  Realistic 

solutions can have more complicated spatial dependence, although they can often be expressed as 

superposition of plane waves. 

 

2. This solution is just from the propagating solution in free space with NO SOURCE (sources can 

be current in Hertzian dipole antenna, static charge, etc.) in sight.  We did not include the source 

that generates this wave here at all.  When the source has non-negligible size and we are 

observing within a quarter-wavelength, the solution can be very complicated.  Electromagnetic 

coupling within a quarter-wavelength is termed as “near field”, in contrast to the “far field” for 

plane wave representation.  Near field communication (NFC) is still useful (such as card 

reading), but there is no propagating waves. 

 

3. When we observe far away from the source, i.e., both the observation point (receiver antenna) 

and the “source” antenna are much smaller than the distance, planewave solutions can be 

representative. 

 

4. The general 3D plane waves can have 2 degrees of freedom, as we only require: 0ˆ. nk


.  This 

is part of the polarization.  By convention, for a monopole receiving antenna, if the electric field 

is aligned with the antenna, it is called the TE (transverse electric) mode, and if the magnetic field 

is aligned with the antenna, it is called the TM (transverse magnetic) mode.  We can have circular 

polarization as well, where the electric field direction has a periodic time dependence, as shown 

in Fig. 1.3. 

 

5. The plane wave is also a solution for EM waves propagate in a metallic wave guide in the z 

direction, if the boundary condition fits, i.e., electric field is always normal to the metal surface.  

For example, a waveguide of metal plates in the yz plane will dictate that ONLY Ex is present, 

while Ey = Ez = 0, as no tangential electric field can exist on metal without causing a current.  

This will become a “transmission line”. 

 zktExE o  cosˆ
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Plane wave propagation 

Fig. 1.2. The plane wave with E in the x direction and H in the y direction, propagating in the z 

direction. 
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1.3 Distributive and discrete transmission lines 

 

In addition to free-space propagation, within a radio frequency (RF) unit, we often hope to guide the EM 

wave propagation so that the waves are confined in space, which will direct EM energy to the desirable 

receiving end and not disperse energy to unwanted places to cause interference.  This is typically 

accomplished by a transmission line or a waveguide.   We can visualize how the transmission line can 

be mapped into the 1D plane wave in free space, or in a 1D waveguide.  A bit more cartoon2 can help 

understand the mapping better.  Notice that below the electric field E


 is in the y direction, and the 

magnetic field H


is in the x direction. 

 

 
where L and C are the unit-length inductance and capacitance with units of H/cm and F/cm, respectively.  

The last two equations are called the Telegrapher’s Equations 
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2 Visit the Wiki page: https://en.wikipedia.org/wiki/Transmission_line 
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Fig. 1.4. Voltage and current waves guided in transmission lines. 

Linear polarization means the electric field 

oscillation can be projected into a line on the 

plane perpendicular to the traveling direction. 
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y 

Circular polarization means the electric field 

oscillation can be projected into a circle on the 

plane perpendicular to the traveling direction. 

Fig. 1.3. Linear and circular polarization of traveling waves. 
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We can also see that the discrete forms of the Telegrapher’s Equations apply to the discrete lossless 

transmission line: 
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L and C in the discrete transmission line above denote the inductance and capacitance per unit length in 

the distributed transmission line.  When z is much smaller than the wavelength, the discrete transmission 

line behaves identically to the distributed transmission lines (or waveguides with the fundamental mode).  

The discrete lattice will behave differently when the segment z is “comparable” to the wavelength, or 

when the frequency is above the Bragg frequency of the LC lattice: 
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Above fbragg, the discrete transmission line cannot support a traveling-wave solution, and will only have 

evanescent wave solutions.  Thus, the discrete lossless transmission line will behave like a low-pass filter 

with absolute (not just a 3dB corner frequency) cutoff frequency at fbragg. 

 

Let’s work with the Telegrapher’s Equations in the distributed transmission line.  Most of the results are 

directly transferrable when the propagating wave has frequency below the cutoff frequency fbragg of the 

LC lattice.  We can easily write down the solution: 
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That is, voltage and current travel down the transmission line with a velocity of 
LC

v
1

 in 

correspondence to the plane wave propagation in free space.  The solution can be expressed in the phasor 

forms of travelling in the +z and z directions: 
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Lz Lz Lz Lz Lz 

Cz Cz Cz Cz Cz 

A discrete lossless transmission line A discrete lossy or dispersive transmission line 

Fig. 1.5. Lossless and lossy discrete transmission lines by LC ladders. 
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where  
C

L

k

L
Zo 


 is the characteristic impedance of the transmission line.  Let’s reinforce with an 

example of a physical distributed transmission line and look at the solution from the transmission line and 

from the plane wave viewpoints.  Popular transmission lines include coaxial cables, coplanar waveguides, 

and parallel-plate slot lines.  Consider the parallel-plate slot lines (clearest for illustration but probably 

coaxial lines are most popular) with waves propagating in the z direction.  The functional forms of the 

traveling waves of scalar (V, I) and vector  HE


,  are shown in the figure below. 

 

 
 

This also serves as the example how the nodes in circuits are equi-potential planes in the Maxwell 

equation viewpoints. 

 

The general transmission line solution is a superposition of the forward and backward waves: 
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The distributive and discrete transmission lines above are “lossless”.  When loss is considered as wire 

resistance and dielectric loss, it will appear as an additional “diffusion” term in the wave equation (second 

order in space and first order in time).  A sinusoidal travelling wave will become attenuated (energy loss) 

and change in waveforms (dispersion).  Luckily, a copper coaxial RF cable often has very small loss, 

typically < 1 dB per 100 m. 

 

Exercise: 

 

For the parallel-plate slot line above with width W and gap d, what will be the unit-length L and C to 

model it as a transmission line? 
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Fig. 1.6. Matchup of transmission-line and plane-wave waveforms from Maxwell phaser solutions. 



 

 8 

 

Notice that the electromagnetic waves are really in the dielectric, so the propagation velocity is 

determined by the dielectric constant at the given frequency (slower than speed of light). 

 

Exercise: 

 

For a co-axial cable as shown below, how should we define the unit-length L and C to model it as a 

transmission line?  Illustrate how  HE


,  will look like in the xy plane with the electromagnetic waves 

propagate in the z direction (out of the paper). 

 

 
 

A closing remark on the transmission line: both the distributed and lumped transmission lines are linear 

circuits or linear elements, i.e., a monotone excitation will only have monotone output in the same 

frequency, even when we include resistive and linear dielectric loss.  However, this does not mean the 

waves with combination of frequency or wavepacket will travel without distortion or dispersion 

(dispersion is defined when the phase velocity depends on frequency).  Consider two waves A1cos(1t-

k1z) + A2cos(2t-k2z) in the transmission line.  If A1 and A2 decay differently by resistive loss, the wave 

composition will change.  Furthermore, if the phase velocity d/dk depends on either A (through 

nonlinear capacitance) or  (through frequency-dependent perimitivity), then the wave composition 

observed at a given t can be further distorted.  If the wave composition or shape, interpreted as the ratio of 

each frequency component (only A2/A1 here), does not change during propagation when the effect of loss 

is cancelled by nonlinearity in A or , we called this propagation “soliton” or “self-reinforcing solitary 

wave. Soliton circuits and waveguides are however NOT used in typical radios (used more often in 

equipment), and will not be covered in this class. 

 

1.4 Transmission Line Analysis: General  

 

The general transmission line solution in the AC expression is a superposition of the forward and 

backward waves (time-domain transient will come later): 
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Fig. 1.7. Coaxial cables in the discrete transmission-line representation. 
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Most common transmission lines in RF systems: 
 

 
 

Transmission line circuits can be readily understood from the source and load connections: 

 

 Z0: transmission line impedance 

 ZL: load impedance (can be complex number) 

 ZS: source impedance (can be complex number) 

 

We will denote the load end as z = 0, and source end as z  to describe the traveling waves of V+ and 

V on the transmission line. 

 

 
 

At the load end (z = 0), we can write the termination of the two traveling waves as: 
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We can thus define the load reflection coefficient L at the load as: 
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1.5 Open, Short, Matched and General Loads  

 

For short-circuit load (i.e., V(z = 0) = 0): 

 

Fig. 1.9. A distributive (continous) transmission line with source drivers (VS and ZS) and termination 

load (ZL). 

Discrete transmission lines 

Coaxial RF cable 
Slotline on 

ground plane 
Coplanar 

waveguide 

Fig. 1.8. Common implementation of transmission lines and waveguides. 
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For open-circuit load (i.e., I(z = 0) = 0): 

 





 



 VV

ZZ

ZZ

V

V

oL

oL
L 1

1

1
 (1.25) 

 

    VVVzV 20  and   00  

oo Z

V

Z

V
zI  (1.26) 

 

If we observe the traveling wave at an arbitrary position z, then we can express the forward and reverse 

traveling waves by using the reflection coefficient L: 
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If we observe the impedance at position z, the impedance towards the load will be: 
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which contains a real part of resistance and an imaginary part of reactance (okay, Smith Chart is almost 

there)… 

 

Short-circuit load Open-circuit load 

Fig. 1.10. Traveling waveforms V+ and V– encountering short-circuit and open-circuit loads. 
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1.6 Observation of Equivalent Circuits at the Source End 

 

At the source end, if we look towards the load, we can observe an impedance of  zZ : 

 

 
 
  









kj

L

kj

L
o

z

zkj

L

zkj

L
o

e

e
Z

e

e
Z

zI

zV
zZ

2

2

2

2

1

1

1

1


















  (1.29) 

 

Equation (1.29) is similar to, but more complex and flexible than, the resonator impedance transfer 

circuits by changing the length of the transmission line.  We can write Eq. (1.29) to find the equivalent 

view of the reflection coefficient: 

 

 
 
 

 
  1/

1/

0

0

0

02











ZzZ

ZzZ

ZzZ

ZzZ
ez jkz

L   (1.30) 

 

 
 

We can further solve the above source-load circuit as: 

 

     
 


 




 


zZZ

zZ
VeeVzV

S

S

kj

L

kj
  (1.31) 

 

The degree of freedom is simply  !!!  In the old days, this is a variable-length transmission line!!!  Let’s 

look at several asymptotic cases. 

 

Consider a short circuit load, we can have: 

 

Fig. 1.12. Transmission-line impedance at the source end.  Notice that )( zZ is a function of ZL 

and  . 

Fig. 1.11. Transmission-line impedance solution at a given line position Z(z). 
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At low frequency, no waves really travelling as 1;
2

;  


k
v




 , we have:  

 

      LjLC
C

L
jkZjkjZzZ oo   tan  (1.32) 

 

That is, the transmission line is like ONE inductor. It should, the discrete transmission line applies here, 

and the shunt capacitance is shorted out.  Or you can simply see this as a one-turn solenoid!  You can 

probably guess that for open load at low frequency, the transmission line will be like ONE capacitor.  The 

transmission line equation goes like: 

 

   
 


CjLCC

L
j

k

Z
jkjZzZ o

o


11
cot    (1.33) 

 
Yes, as the two lines are separated by a dielectric, it will be a capacitor! 

 

One more interesting case is the match load, where L = 0.  The impedance at any point in z is Z0!!! 

 

1.7 Periodicity and SWR 

 

Now we will take a look at the general ZL case and make a few more observations.  As previously, the 

impedance at any z can be expressed as: 

 

 
zkj

L

zkj

L
o

e

e
ZzZ

2

2

1

1




   (1.34) 

 
We can notice that the periodic behavior of the impedance:  

 

Z(z) = Z(z + m/k)=Z(zm/2).  (1.35) 

 

That is, the impedance at z will repeat itself for every half wavelength. 

 

   




kjZ
e

e
ZzZ okj

L

kj

L
o tan

1

1
2

2











Fig. 1.13. Transmission-line impedance at the source end with short-circuit termination.  Notice that 

the impedance at z is a function of  only. 
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Finally, if the forward and reverse-going waves interfere with each other, a standing wave can be formed 

in the steady state.  Recall: 
1

1










oL

oL
L

ZZ

ZZ

V

V
, and ZL can be a complex number. 

 

   zkj

L

zkjzkjzkj eeVeVeVzV 









   with j
LL e  (1.36) 

 

We can see the magnitude of the standing wave will be: 

 

    
   











zkVzV

zkVzV

LL

LL

2cos21

2cos21

2

222

  (1.37) 

 

We can define a standing wave ratio (SWR): 

 

 

  L

L

zV

zV
SWR






1

1

min

max   (1.38) 

 

Z0, ZL, L and SWR are different ways to look at a transmission line of Z0 terminated with ZL.  They are 

not independent to each other, and are used interchangeably most often due to convenience of viewing or 

measuring.  Simultaneous representations of all parameters can be viewed in the Smith Chart (next 

lecture). 

 

As a closing remark on the RF system in general, radio components (filters, amplifiers, mixers, etc.) are 

made individually (to be of general-purpose components) with unavoidable variations.  When a radio 

engineer (especially in the old days without RFIC) put together a transceiver, each component is 

measured to make sure their role in the system has everything needed.  Just like good carpentry: “Measure 

twice, cut once”!!!  Once you deliver the whole radio system, many times it will be too late to know the 

component variations.  Why do we need such perfection?  In a transceiver, as the power we need to deal 

with has a huge range (say 1W transmission and 1pW reception), we need to know the small details, 

because a tiny reflection of the transmitter can possibly totally pollute your receiving signal chain! 

 

Exercise: 

 

A step pulse (very seldom in the RF signal, but common in digital or baseband) is sent on a transmission 

line with ZS = Z0.  If the receiving end can be approximated with an open circuit (a small capacitance), 

describe the transient V+, V– and (V+ + V–) waveforms.  Notice that you cannot use the traveling wave 

here, as the step pulse contains many frequencies.  However, the impedance and reflection coefficient in 

the Thevenin circuits remain valid. 

 

1.8 Transmission line analysis by Smith Charts 

 

Smith Chart is invented by Phillips Smith in 1930s as a visualization tool for the impedance Z or 

admittance Y with respect to the reflection coefficient  of the transmission line, or in general, a signal 

chain connected by the transmission lines.  It is also useful to guide the antenna design for impedance 

matching.  Actually it can be applied to any system solution that deals with the superposition of forward 

and backward going waves (like in oscillators or optics).  Extended Smith Chart can be used for noise 

figures, gain contours and stability analysis.  In 2015, all copyright was now transferred to IEEE in 2015!   
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Mathematically, Smith Chart is plotting the contours of the real (west-most point is 0 and east most point 

is  in circles) and imaginary (0 at west-east line, north-most point is 1 and south-most point is -1 in 

radials) parts of a quantity Zn on the polar plane of  (|| is the radius and  is the azimuth angle), where 

Zn and  are related by:  

 






1

1
nZ  or  

1

1






n

n

Z

Z
 (1.39) 

 

The design parameters will be most useful when it is linearly dependent on , such as the length 

parameter z in the transmission line.  Most analyses can then be dealt with by a ruler and a compass.  As 

most engineers are lazy, usually a ruler is good enough. 

 

Surely, computers will not need the Smith Chart, but it can help you simultaneous view Zn and  (and 

other variables in the future).  We should first observe for any Zn, we would have ||  1 (to be in the 

polar coordinates).  In any given point in the Smith Chart, we can simultaneously read four quantities 

from the labels on the chart: ||, , Re(Zn) and Im(Zn). 

 

The east-most point will need some explanation, as it can represent any real part of Zn.  We will look at 

this degeneracy to cast away future doubt when we land at this point.  Notice that the west-most point of 

 = –1 can only be true if Zn = 0.  The most obvious solution of  = 1 is Zn , which corresponds to 

many possible scenarios, as either the Re(Zn) OR Im(Zn) approaches  will be sufficient. 

 

 
 

Let’s see how the Smith Chart can be applied to the convenient use of the transmission line analysis. 

Remember that all analyses below are based on fixed k,  and , i.e., valid only in a very narrow band. 

Contours of real and imaginary parts of z = Zn 

plotting on the  polar coordinates. 
 as a complex number in the polar 

coordinates. 

Fig. 1.14. Use of the Smith chart to find the reflection coefficient and complex impedance. 
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From the previous lecture, we know that the impedance of the transmission line with a general load can 

be expressed as: 

 

 
 
  zkj

L

zkj

L
o

e

e
Z

zI

zV
zZ

2

2

1

1




 , (1.40) 

 

 
 
If we define a reflection coefficient (as a complex number) anywhere at location z as: 

 

  zkj

L ez 2  (1.41) 

 

We then have the relation between Zn(z) = Z(z)/Z0 and (z) as: 

 

 
 
 z

z
zZn






1

1
 and   

 
  1

1






zZ

zZ
z

n

n  (1.42) 

 

We can see this corresponds to the mathematical description in the Smith Chart.  The change in z, from 

observing   zkj

L ez 2 , is represented by the 2kz = , where 





2


v
LCk .  So, if we 

know L at z = 0 (we know |L|  1) for one point in the Smith Chart,   zkj

L ez 2 will be the contour 

of a center circle when z goes to /2.  Then both (z) and Zn(z) will periodically change for every /2. 

 

In the figure below if we have Z0 = 50, ZL/Z0 = Zn(z=0) = 1.0 + j1.4 (i.e., 50 resistance and 70 

positive/inductive reactance), we can use that point to draw a circle at center in the clockwise rotation, 

which represents how Zn changes when z moves from 0 to /2.  We can easily identify how long the 

transmission line needs to be when Z is real by the Smith Chart.  The contour passes the X-axis (where 

Im(Z) = 0) two times, one at Zn = 4; Z = 200, and the other at Zn = 0.3; Z = 15.  We can also see what 

Z can be possibly achieved from the circle. 

 

Fig. 1.15. The transmission-line impedance at arbitrary position between (– , 0). 
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One more practice before we will introduce the Stub tuning and quarter-wave matching.  Suppose, we 

start with a load of 10, and hope to match the real part to 50 at the source end (do not care the 

imaginary part yet, as you can see, you cannot work on both just using one transmission line). 

 

 
 

We first know that Zn = 10/50 = 0.2 and 667.0
3

2

1

1







oL

oL
L

ZZ

ZZ
(in the complete Smith Chart, -

0.667 can be read from the bottom).  We can then construct the center circle and see that it will intercept 

the Re(Zn) = 1.0 circle two times.  We will take one in the upper hemisphere, which will be 50 plus an 

inductance, and we can read 0.18 from the outer perimeter. 

 

Zn(z = –0.18) = (1.0 + j1.8); Z(z = –0.18) = 50 + j90. 

 

1.9 Conjugate matching by series and parallel stub tuners 

 

To cancel the imaginary part after matching the real part of Z, we can use the series stub tuners: 

 

Fig. 1.17.  A calculation example of a transmission line with characteristic impedance of 50 . 

  4.10.10 jzZn 

  Lz  0

Inductive 

Capacitive 

Fig. 1.16. The upper hemisphere of the Smith Chart has positive imaginary part for impedance and 

hence inductive, while the lower hemisphere is capacitive. 
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We can see we will need a series of –j90 (capacitive) to cancel the inductive reactance.  This can be 

accomplished by a Z0 = 50 transmission line with an open load (most convenient) and length to be 

found in the Smith Chart.  Starting from the open circuit at the east-most point, we can find –1.8 in the 

lower hemisphere on the outmost circle with a wavelength number of 0.33, where we can find the length 

of the stub should be: 0.33 – 0.25  = 0.08. 

 

 
 

You can use a parallel stub runner as well.  We know that admittance is more convenient to use in parallel 

network.  Luckily, admittance can be read from the Smith Chart readily with 180o phase shift, because 

 

 
 

 
 

 
 
 z

z

zZY

zY
zY

zZ
zY

no

n





1

11
;

1
 (1.43) 

 
Stub runners are used extensively in microwave circuits, and are useful to the antenna matching in the 

radio design as well. 

 

Notice that all analyses done previously assume fixed frequency and wavelength, and is ONLY valid 

within a small spectrum of the carrier frequency. 

10GHz power amplifier 

with radial stub runners 

for matching the coaxial 

cable. 

Coaxial cable 

connector 

Low-loss microwave 

substrate 

Stub 

Microwave 

Transistor 

Stub 

Fig. 1.19. Example and photo of stub tuners in microwave amplifiers. 

Fig. 1.18. A open-circuit stub tuner in series of a transistor with a realistic load for canceling the 

imaginary part of the impedance at the source end (to achieve the conjugate matching condition). 
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Exercise: 

 

If the transmission line has quarter wavelength, how does it transform ZL to the source end? 

 

Answer: quarter wavelength is half circle, so it will just be the inverse (notice that Smith Chart works in 

normalized numbers).  Now   Ln ZZZZzZZ /)/1(4/ 2

001   .  This is actually one of the easiest 

ways to obtain Z0 by measurements (as infinite lines do not exist, and you cannot easily match it without 

knowing the exact Z0). 

 

 
If the transmission line has half wavelength, then we will have Z1? 

 

 

1.10 RLC resonators and resonance frequency 

 

Maxwell’s equations are the physical truth describing the geometrical aspects of the electric and magnetic 

field profiles, subject to the boundary conditions and sources (net charge, current and magnetic dipole).  

Circuits, as in simulation program with an integrated circuit emphasis (SPICE), are topological 

descriptions of the voltage and current of the circuit nodes (integration of the equi-potential planes as the 

Maxwell’s equation solution, which will become clearer in the plane wave propagation example). 

 

R, L and C are 0D, 2-terminal circuit elements, when the physical implementation can be approximated 

by the topological description of two circuit nodes: 

 

V = ZR or  

 

v = iR  

iLj
dt

di
Lv    

LjZL   

vCj
dt

dv
Ci    

Cj
ZC



1
  

 

Passive elements are very often used in RF design for filtering, impedance match and resonating circuits.  

They are often referred as RLC network or RLC banks.  In RF circuits, we used both lumped elements 

like RLC and transistors, as well as distributed elements such as antenna, to accomplish radiation of the 

selective electromagnetic waves into the space. 

 

Consider an example of RLC resonator (parallel network can be thought for current amplification in a 

selected frequency, or the resonance frequency): 

 

inZL
Cj

RLj
Cj

R
Y

11111















  (1.44) 

 

Y and Zin become real at the angular frequency:
LC

o

1
  
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For fast estimation, 1nH and 1pF give 5GHz resonating frequency. The radio frequency of interest today 

is in the range of 500MHz to about 10GHz (some extended to 40GHz, but not much more), which is in 

good correspondence of what can be easily achieved on PCB, or in many IC technologies (although the 

passive elements of nH and pF will look a lot larger than the transistors).  500MHz is often constrained by 

the size of the antenna, as efficient antenna needs to be “about” or larger than the quarter wavelength.  

1GHz has wavelength in air for 30cm, and the quarter wavelength at 7.5cm is about your palm size (not 

counting fingers) that can be easily held.  With bandwidth as a percentage of the carrier frequency, 

500MHz is also constrained from the data rate.  For example, if a channel occupies 0.5% of the carrier 

frequency at 1GHz, the bit rate is around 5 Mb/s, which is be larger or smaller by the SNR and 

modulation methods.  The upper bound of 40 GHz is often limited by the free-space loss, which has two 

major factors: the range given by Frii’s far-field space loss is proportional to 2 (which will be clear in the 

future) and the propagation attenuation factor  (in cm-1) as the absorption coefficient in air increases 

with frequency until we reach close to the spectrum of visible light. 

 

Far-field transmission with ONLY Frii’s free-space loss (this is how the radiation energy is spread on the 

propagating spheres): 

 

rssourcereceiver
r

PP 









2

4


  (1.45) 

 

where Preceiver is the power at the receiver antenna, Psource is the power transmitted at the source antenna, 

and s and r are the antenna gains of the source transmitter and the receiver.  

 

The absorption coefficient in air (as a function of the air content, especially moisture) is typically: 

 

Iin R L C 
Zin Vout 

+ 

 Fig. 1.20. An RF resonator with RLC 

in parallel. 
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Important observation: At o , the impedances of L and C cancel each other, but the transient or AC 

current in L and C can become VERY large, which is the essence of resonance.  The energy is stored in 

the system and oscillating between L and C, and it looks from the outside the IV relationship can be 

described by R only. 

 

1.11 The meaning and use of Q 

 

How huge can be oscillating waves in the LC network? We often understand it from the idea of Q (quality 

factor), which by definition is: 

 

dissipatedEnergy

storedEnergy
Q

_

_
  per unit time.  (1.46) 

 

In resonating circuits, we can think Q as unloaded (just the internal RLC circuits) and loaded (together 

with the load to be driven by the resonating circuits). 

 

Energy dissipation in RLC resonators: 

 Resistive loss (including line resistance of L and C) 

 Substrate loss (any conductor or semiconductors that have coupling to the magnetic fields of L 

such as the Eddy current) 

 Radiation loss (such as in antenna, which means antenna can be represented by a resistor in the 

system circuits) 

 Dielectric loss (dielectric of C, usually only serious when f > 40GHz) 

 

The peak voltage at o  across L and C can be estimated as (RLC elements are in parallel) 

Common 

RF bands 

Visible light 

spectrum 

Fig. 1.21. The absorption coefficient (imaginary part of the dielectric constant) in the EM spectrum. 
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RIV Rpeak    (1.47) 

 

Therefore, the energy stored in the resonating L and C is: 

 

 22

2

1

2

1
RICCVE Rpeakstored    (1.48) 

 

The average power dissipated by the resistor is: 

 

RIP Rdissipated

2

2

1
  (1.49) 

 

Therefore, at o  

 

C

R

L

R

Z

R

CL

R

LC

RC

P

E
Q

dissipated

stored

000

0
/1/ 

   (1.50) 

 

where 
C

L
C

L
Z 0

00


  is called the characteristic impedance of the LC network. 

 

We can now write the peak current magnitude in L and C at o as: 

 

inR

Rpeak

LC IQIQ
L

RI

Z

V
II 

00 
 (1.51) 

 

We have achieved a large current amplification ONLY at o !!! 

 

1.12 The crystal radio receiver 

 

Now you can understand how the crystal radio receiver, originally by Bose, worked back in 1897! 

 

 
 

Fig. 1.22. Crystal radio receiver by Bose in 

1897. 
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The antenna is the AC current source.  After many cycles, the L1/C1 resonator achieves steady state and 

has a large current magnitude.  If the “loaded” Q (including energy dissipated through diodes to actuate 

the earphone) is large, the positive cycles of the frequency-specific oscillations will be collected to C2 and 

actuated the earphone.  The diode with 0V turn-on voltage is critical, or else the AC voltage cannot be 

integrated into some useful DC potentials (the baseband of the crystal radio receiver).  This is also a 

simple RFID frontend or class C power amplifier (often with much more complicated designs to boost the 

efficiency over 50%, and with various stages to pump the current/voltage higher than Q times). 

 

In RF IC or PCB, the zero-threshold diode (or diode-connected transistor) is an important element.  The 

threshold voltage needs to be at an optimal value. If the threshold voltage is too negative, the reverse 

leakage will reduce the efficiency.  If the threshold voltage is too positive, only a small amount of energy 

with voltage above the threshold voltage can be scavenged. 

 

Exercise:  

For the series RLC network in Fig. 1.23, derive 
LC

o

1
 , 

C

L
Z 0 ,

R

CL
Q

/
 , and .Q

V

V

in

L
  

 

 
 

1.13 Bandwidth and safety regulations for RF 

 

Carriers as a single-tone do not carry identifiable information (it does carry the range information in its 

time-of-flight or phase shift).  Any modulation in amplitude, phase, frequency or code will spread the 

spectrum usage a little bit.  Let’s restrict ourselves first to this small frequency spreading around the 

center carrier frequency.  Actually this will be most of the semester until we generalize to ultra-wide-band 

(UWB) radios, which we will NOT spend much time in this class.  The bandwidth BW = 2  is typically 

smaller than 1% of the carrier frequency, mostly for the sharing purposes.  A typical example for the 

RFID regulation for one channel is shown below, where fcarrier is around 866MHz in EU and 910MHz in 

US FCC (Federal Communication Commission).  BW here is about 0.23% in EU and 0.55% in US in the 

respective carrier frequency. 

 

To share the same “free” space for everyone, central regulation on frequency and power transmission is 

necessary for wireless communication.  If the radio waves are confined in a cable or waveguide (such as 

cable TV and Internet, or in general, light in optical fibers), only the leakage out of the outer shield needs 

to be regulated.  If the radio waves are confined in a chamber (such as your microwave oven with 

2.45GHz operations), again only the leakage is important.  Different regions may have different 

regulations in various frequency bands.  Lack of global standards is an additional design burden for RF 

products, because some circuits need to be tuned to fit the different regulations in a specific country of 

operation. 

 

Vin 

R 

L 

C 

Zin VL 
+ 

 

~ 

Fig. 1.23. An RF resonator with RLC 

in series. 
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The other concern is the human health and safety.  In the bands between 30MHz to 1GHz, the OSHA 

(Occupation Safety and Health Administration) regulates the emission has to be lower than 1mW/cm2 

over a six-minute averaging period, mainly for the non-ionizing heat concerns. Higher frequency 

regulation can be found at OSHA web page: 

https://www.osha.gov/SLTC/radiofrequencyradiation/electromagnetic_fieldmemo/electromagnetic.html 

 

 

 
 

1.13 Bandwidth and quality factor for resonators and filters 

 

Let   0  where we assume 0  .  The response from the above RLC network in parallel 

at 0  will then be 

 

Fig. 1.25. OSHA RF 

safety regulation  

fcarrier fcarrier +200kHz fcarrier  200kHz 

Example: RFID 

regulation on 

frequency and 

bandwidth 

Fig. 1.24. An example of channel and bandwidth assignment by FCC. 
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What does the imaginary term in Y mean? The behavior close to 0  is like the original resonator with a 

RC envelope with R in parallel with 2C!  We do know the 3dB bandwidth of a RC network is 
CR 

1
, so 

we can write (the bandwidth by 0  needs to be 2 times): 

 

QRC

BW 11

00




. (1.53) 

 

For the resonating circuit, this makes sense.  For large Q, BW will be correspondingly small, or in other 

words, the system is VERY frequency selective.  A review of Bode plots for the low-pass, high-pass, and 

single-pole-zero circuits are shown below. 
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Fig. 1.26. Bode plots of magnitude and phase for (a) high-pass and (b) low-ass filters  

(a) (b) 
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High Q makes good frequency selection in a very precise resonant circuit.  However, Q of an antenna can 

limit its BW, and for many channel hopping systems, the antenna needs reasonably large BW, and hence 

small Q.  From the definition of Q, this also makes sense.  The purpose of the antenna is to radiate EM 

energy to the far field (radiation loss can be treated as resistive loss in the transceiver system), instead of 

storing energy.  Hence, if the antenna stores lots of energy around it (Q becomes large) instead of 

dissipating to free space, it is an antenna with large Q but very limited bandwidth.  Notice that the antenna 

gain concerns with how the radiating energy is distributed in the far-field space, and has no direct relation 

with the antenna Q. 

 

1.14 The conjugate impedance match 

 

You have learned impedance matching in your introductory course.  Impedance match has two purposes: 

 

(1) Maximize power transfer given a source resistance (not maximizing signal amplitude);  

(2) Minimize reflection in traveling waves (transmission lines, waveguides and antennas).  This is 

critical for noise consideration, which we will treat details in the coming lectures. 

 

Given a real source and load resistance in series (works in parallel as well by the Norton source), the 

power consumption at RL can be expressed as: 

 

 2
2

LS

SL
L

RR

VR
W


 .  At a GIVEN RS, to maximize WL, we take the partial derivative of WL with RL while 

RS is constant. 

 

    SLLSLLS

RL

L RRRRRRR
R

W

S





200

2
 (1.54) 

 

As RL and RS have to be positive. 

 

Fig. 1.27. The Bode plot of a one-pole and one-zero system where fp1 < fz1 .  Both magnitude and 

phase for single-pole and single-zero cases are also shown. 



 

 26 

 
 

Notice that the same derivation can be applied for complex impedance with a bit more complicated 

operation when ZS = RS + jXS and ZL = RL + jXL.  The partial derivative of WL with ZL while ZS is constant 

will yield: 

 

RL = RS; XL = XS.  Or ZL = ZS* for the conjugate matching condition. (1.55) 

 

Also notice that when RL is held constant, maximum of WL gives RS = 0!!!  Not matching!!!  For sure, this 

is natural as we hope RL will take all the power delivered by VS, when VL = VS.  Also, this is just for 

maximizing WL with no consideration of reflection for waves traveling from RL (in transmission lines, this 

would be RL = Z0, the characteristic impedance) to RS.  The reflected wave can be seen as a noise addition 

to the voltage source, and is important in considering the transient of a digital link. 

 

Exercise: 

 

Someone tries to sell you an RF source (delivering say 1W in a tunable frequency range of 100M – 1GHz 

with nearly zero source impedance), claiming that the RF source by other companies with 50 source 

resistance can only deliver half of the power.  What will be your response to the salesperson? 

  
1.14.1 Impedance transfer from matching network 

 

The LC bank is also popularly used as “matching network” to transform impedance.  The other popular 

choice of matching network is the transmission line.  By observation from our derivation up to now, the 

LC bank matching network will work ONLY close to the specific resonant frequency 0 , and by 

definition, it is a narrow-band system.  As the derivation is very similar to the previous resonant circuits, 

we will leave it to homework. 

 

1.15 RF Power amplifiers 

 

The resonator circuit is also a big part in the RF power amplifier.  1W of radiating power on a 50 

antenna already has a peak-to-peak voltage of 7V, and the direct quasi-static power amplifier (such as a 

common-source or common-emitter amplifiier) is often not power efficient.  A generic RF power 

amplifier is shown below with a RLC resonator output stage. 

 

VS RL 

RS 

VL 

+ 

 

+ 
 

Fig. 1.28. Conjugate impedance 

match considerations. 
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Class of an RF power amplifier is made on the operating point for the active elements.  Class A has an 

active element that is always 100% on, Class B for only 50%, Class AB for ON between 50% and 100%, 

and Class C for less than 50%.  Notice that the output full sinusoidal wave is maintained by the resonator 

circuit (which also determines the PA output frequency), and the active element is feeding the RF energy 

to the resonator by current injection of a much broader spectrum. 

 

You can see that power amplifier only gives a significant RF output at the resonant frequency determined 

by LC.  The RF power efficiency is measured by the radiating RF power vs. the input power of vIN and 

VDD.  The transistor can burn significant power (the power in the transistor is wasted without being 

radiated), which determines the efficiency.  Therefore, the design point in Class C PA with a “higher 

efficiency” is to turn on the transistor in smaller duty cycle, at the cost of the linearity.  We will talk about 

the tradeoff between power efficiency and linearity later in the semester.  Any power input to the PA 

without being radiated will become heat.  For high-power transmission above 40dBm (10W), this can be 

significant.  PA design indeed involves many temperature considerations, as iA can be highly temperature 

dependent. 

 

Except from parasitic elements not shown in the simple circuits and possible noise to the overall VDD 

supply (power line noise), the RF PA is reasonably unilateral, i.e., signals travels from vIN to vOUT, not 

vice versa.  However, in the transceiver circuits, even small leakage matters a lot.  We will discuss about 

this later as well. 

 

 

• BFL: big, fat inductor to keep current constant 

• BFC: big, fat capacitor to block all DC 

leakage but pass all RF power 

• RL: load (most often, antenna or another PA) 

• iA: current injected by the active element 

 

Fig. 1.29. Generic RF power amplifier (PA) 

iA 
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 A further note is probably worthwhile here.  RF PA designs involve more than the simple resonators in-

parallel (Class A, B, AB and C) or in-series (Class E) or combination (Class-F, involving harmonic 

cancellation), and deserve a full circuit treatment not covered in this course.  However, there are two 

fundamental facts that we should know in the signal level: 

 

1. RF PA relies on resonant circuits to maximize the current/signal swing in the antenna and hence 

free space, instead of just the basic amplifiers operating way below the cutoff frequency of the 

transistors.  Therefore, it is important to consider the bandwidth of the power amplifier, and any 

potential contamination for signals in other frequency, whether this is in your own system, or this 

is another radio transceiver. 

 

2. RF PA often sits at the interface between (a) the transceiver part that lumped circuit elements in 

SPICE (where KCL and KVL apply) give a good description and (b) the antenna part that ONLY 

Maxwell equations (integration of Hertzian dipoles) can explain the details.  The simplified 

analogy of antenna to RL in the circuit description remains only an analogy.    

 

1.16 Signal-level representation of the RF power amplifier 

 

For an amplifier in the radio signal chain, if the power level is below around 0dBm (for 1mW on a 50 

load this corresponds to voltage level of 0.2V), we usually treat it as a broadband, quasi-static amplifier, 

where the amplifier is sufficiently described by its gain (current, voltage or transconductance), and I/O 

impedances.  However, for RF PA, due to the use of the resonator in parallel or in series to boost the 

iA 

iA 

iA 

iA 

IDC + irf 

iA  in Class A RF amplifier  

vIN 

iA  in Class B RF amplifier  

iA  in Class AB RF amplifier  

iA  in Class C RF amplifier  

Fig. 1.30. Illustration of current 

injection into the LC resonator in Class 

A, B, AB and C RF power amplifiers 
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radiation efficiency in a particular band, additional parameters such as frequency, bandwidth, power 

efficiency and nonlinearity (described by IIP2 and IIP3, to be explained in system nonlinearity) are 

needed to represent sufficient information in the signal chain. 

 

Any power input into the radio system that is not radiated by the antenna will eventually become heat to 

the system.  At the RF PA, which is the major heat source of the radio system, the temperature 

coefficients and the means of heat dissipation are additional concerns.  For example, if you need 40dBm 

(10W) transmission for a give range of 1km and the power efficiency of PA is 25% (class A), then at least 

40W needs to be sent to the radio transmitter system with 30W dissipated as heat.  We can use this rule of 

thumb of heat dissipation: 

 

 ~1W: no special heat sink (your Bluetooth). 

 ~10W: a static metallic sink (your cell phone). 

 ~100W: an air fan or very good ventilation (your notebook computer, and base stations on lamp 

posts) 

 >1kW: a liquid-cooling unit (radio/TV stations, radar, etc.  Do not walk too close to the 

antenna!!!) 

 

 

 


