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In the late 2000s/early 2010s, we, as others in the ar-
chitecture community, were transitioning from power-aware
strategies for general-purpose computing to accelerators. We
were somewhat familiar with neural networks, e.g., while a
senior in 1996, Tor completed Geoff Hinton’s grad course
and an RL-based thesis, whereas Patrick developed an interest
in machine learning and computer vision while writing his
master’s thesis. In 2009, Andreas, prompted by Jonathan
Rose, established the first CUDA programming course in
Toronto, building over materials from Wen-Mei Hwu and
David Dirk. Alex Krizhevsky’s class project, a convolutional
neural net, led to a meeting with Geoff Hinton. The success
of neural networks was uncertain, but we found the prospect
of accelerating them with reconfigurable hardware or custom
GPU kernels intriguing.

Meanwhile, other collaborative research efforts began to
materialize, and the flexibility they afforded enabled us to set
our own objectives and helped us have Jorge, a recent Ph.D.
graduate from the University of Zaragoza, join us in 2013.
Around this time, the excitement surrounding deep learning
had intensified, particularly due to our close proximity to
the Computer Sciences department. Raquel Urtasun, who has
since become a prominent figure in machine learning and
its applications, particularly in autonomous driving, joined
Toronto at the time. We were fortunate to establish an early
collaboration with her. Jorge dedicated himself to learning
about machine learning, frequented Raquel’s course and met
with her group several times. It took significant time and effort
to learn to “speak each other’s language”.

As we ventured into machine learning acceleration, we
leaned on our collective experience with architectural opti-
mizations for general-purpose systems where many optimiza-
tions, such as caches and branch predictors, exploit natu-
rally emerging behaviors in applications. It was clear to us
that several “front-line” optimizations, such as data blocking
and parallelism, would receive immediate attention. These
computation-structure-based techniques have proven effective
in other application domains yet applying them effectively is
a non-trivial task. We assumed that many would focus on
these optimizations first given their potential for immediate
and tangible benefits. As academics, we believed our efforts
would be more valuable in identifying techniques that could
prove useful in the future. Consequently, we chose to pursue

behavior-based optimizations. Our aim was to examine deep
learning models and pinpoint naturally emerging behaviors
that could help us automatically reduce computations and data
transfers. We assumed that neural network architectures will
evolve, thus to increase the chances of staying relevant, we
concentrated on elemental operations and data transfers. Like
many other groups at the time, we focused on convolutional
neural networks which were the most mature. Finally, we
assumed that as in general-purpose computing, it would be best
not to require that the developers modify the models to best fit
the hardware we had in mind. Whatever technique we were
to develop had to work with unmodified models and where
possible to reward hardware-aware model optimizations.

Patrick was inspired by Joshua San Miguel’s and Natalie’s
work on approximate computing to apply similar principles
to machine learning acceleration. Early on, he noted that the
datatypes utilized by these models could be further optimized.
He devised a heuristic, profile-based method for post-training
quantization to minimize per tensor bit widths. This insight
led to two precursor works to Cnvlutin that fed into it. The
quantization method developed in collaboration with Raquel,
was submitted to ICLR but failed to convince of its impor-
tance. It was eventually published as a journal paper. Proteus
was a hardware/software co-design that utilized per tensor bit
widths to minimize footprint. A key concept in Proteus was
Patrick’s idea to pack variable length encoded values into
virtual columns to reduce lateral movement avoiding wide
crossbars. After a few iterations, it was published at ICS.

Meanwhile, Jorge was analyzing neural models with a
specific aim to observe value properties and other emerging
behaviors. He discovered that many filters had similar or even
identical weights at corresponding positions. We hypothesized
this might be due partly to how the models function and partly
to the filters’ cuboid shape having to encapsulate complex-
shaped features. He also noticed that many values, especially
on the activation side, were zeros. Intriguingly, while the
zero activations would change with the input, their overall
frequency remained relatively constant. We hypothesized these
represented locations or features deemed non-important or
absent and that ReLU clipped to zero. Focusing on the first
layer in image classification tasks gave us an opportunity to
rationalize this phenomenon.

These two value behaviors led to Convoy, an attempt at



an accelerator design that predated Cnvlutin that Jorge led
and pursued with Patrick and Siu Pak Mok, a student of
our beloved colleague Greg Steffan that left us too early.
Convoy initially aimed at reusing computations across filters
and possibly other dimensions. It morphed into an effort to also
take advantage of the zeros by removing computation. While
ultimately Convoy never materialized it served as an excellent
learning experience helping us appreciate the challenges of
energy efficiency, especially when data movement is involved.
Convoy also introduced concepts that we later revisited and
refined, leading to solutions for extracting sparsity.

In Cnvlutin, our aim was to eliminate zero-involved com-
putations and, if possible, data movement. We focused on
activations, considering them more challenging and therefore
more interesting to address. Our design, refined over numerous
in-depth meetings, was based on DaDianNao’s processing
element [1] which exploited spatial and temporal reuse. The
key challenge in Cnvlutin was minimizing data movement
and expensive crossbars. We chose to support only temporal
movement to avoid the high cost of arbitrary spatial and
temporal movement. This reflects a fundamental trade-off in
computer architecture: it’s not necessary to leverage every
opportunity, just enough to provide significant benefits. We
realized during Cnvlutin’s development that there’s ample time
to rearrange layer outputs before they become inputs for the
next layer. This enabled Cnvlutin to organize values in memory
so that the non-zero ones appeared in sequence when read
back. Furthermore, drawing on Patrick’s previous quantization
work, we found many near-zero values could be treated as
zero, amplifying benefits and enabling a trade-off between
energy efficiency and accuracy.

Evaluating Cnvlutin necessitated the development of a new
methodology, incorporating existing concepts and tools. We
created an in-house simulator for cycle measurement and
used established tools for memory energy and area modeling.
Tayler’s expertise was invaluable in modeling the energy and
area of the custom logic. To this day, accessing technology
nodes superior to 65nm remains a challenge for Canadian
researchers. We also “opted” not to build test chips for
Cnvlutin or our other early projects. Building a chip remains
prohibitively expensive given our limited resources and time
afforded with our students. We opted instead to explore
additional techniques.

We’re grateful to the ISCA’16 reviewers who appreciated
our work and provided supportive, constructive feedback. We
feel honored to have our work featured alongside several
influential papers on ML acceleration at the same event. The
appreciation shown tremendously boosted our motivation and
eagerness to continue our work. Cnvlutin inspired us to delve
further into ML acceleration and set the groundwork for
broader initiatives in Canada. Our subsequent research has
encompassed bit sparsity for inference and training, advanced
post-training quantization approaches, sparsity extraction, effi-
cient datatype learning, lossless and lossy compression meth-
ods, data fetching policies, reducing computations and data
footprint during training while provably maintaining accuracy,

and resilience to attacks. Would we implement all these
techniques in an ML accelerator design? Certainly some we
would, but definitely not all. Yet, we don’t regret exploring any
of them. We value understanding under which conditions each
technique is viable and of having inspired follow up work.

Collaboration and funding are crucial to any successful pro-
gram. Natalie, Tor, and Andreas initiated an effort to establish
a Canada-wide research network on ML acceleration. Despite
initial mixed reactions, we ultimately formed the NSERC
COHESA research network, thanks to local industry support.
The consortium of 23 colleagues and 5 companies focuses on
the exploration of hardware and software acceleration tech-
niques. Although the 6-year program is now concluding, its
impact will persist, both through the work it facilitated and the
young researchers it mentored. Securing sufficient support for
architecture work and fostering appreciation or understanding
for its importance continues to present challenges. Establishing
and sustaining a research team takes years of effort, but it can
be disrupted in a matter of months.

In terms of publication, besides Cnvlutin and Stripes, gain-
ing acceptance for follow up work has grown increasingly
arduous, discouraging younger researchers and impeding their
career and work advancement. This is a challenge that extends
beyond the realm of computer architecture. As a community,
we often hinder our own progress by placing excessive empha-
sis on achieving ”perfection” rather than evaluating the value
of advancements in research. This particularly challenging in
machine learning acceleration that is receiving universal atten-
tion in the broad research community. Exploring alternatives
and establishing when they are preferable is a foremost goal of
research. It is not about proving that a technique is universally
better under all possible perceived conditions/goals. It is about
feeding into further innovation and informing practical designs
regarding the suitability of alternatives.

After leaving Toronto, Jorge joined NVIDIA, continuing his
work on deep learning acceleration. He then joined Cerebras,
contributing to the architecture of their unique technology,
before returning to NVIDIA. There, he applies a holistic per-
spective on deep learning and related applications, informed by
his initial, elemental operation-level work and understanding
of hardware-level implications. He and his NVIDIA colleagues
devised the industry-leading structural sparsity solution. After
graduation, Patrick also joined NVIDIA, focusing on enhanc-
ing deep learning support and has been a major contributor
to the design of efficient data types for training and infer-
ence. After UBC, Tayler joined Oracle, where he worked on
developing methods for interpreting the behavior of machine
learning models, and has since transitioned to building a high-
performance cloud database service.
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