
Retrospective: Memory Bandwidth Limitations of
Future Microprocessors

Doug Burger† Alain Kägi‡ James R. Goodman⋆
†Microsoft Research ‡Lewis & Clark College ⋆University of Wisconsin-Madison, Emeritus

I. HISTORICAL CONTEXT

It is an odd experience to re-read a paper you wrote 28 years
ago (published 27 years ago) for the first time in decades.
The field has changed so much, that the paper feels like an
artifact from a distant era, and in many places seems naı̈ve.
But the length of time since publication gives us the distance
to observe the paper in its proper historical context.

When we wrote this paper in 1995 (published in 1996),
we were halfway through the period of ”frequency infla-
tion,” when processor clock rates accelerated beyond historical
trends, growing by approximately a factor of twenty in ten
years (1990-2000). The transition from in-order to out-of-order
single-chip CPUs (at the high end) was starting to happen, but
was still several years from completion. Since most cores were
mostly in order, and since clock frequencies were increasing
rapidly, memory latency was looking to be a large and growing
problem. This latency challenge was popularly referred to as
the ”memory wall” [7].

When we started the research, the challenges from growing
memory latencies were clear. As we discussed this challenge,
it became clear that it was possible to improve latency at the
expense of extra memory traffic. That led us to consider how
limited memory bandwidth was likely to be, e.g., how much
of a ”bandwidth budget” did we have to spend on improving
latency? To understand the interplay between latency and
bandwidth, we needed a way to measure how much of average
latency was raw, contention-free memory latency and how
much was contention in the memory system. The need to
quantify that partitioning led us to generate the model that
partitioned memory latency into raw contention-free latency
and bandwidth contention components.

That model in turn led us to think about which techniques
would improve latency inherently, and which would improve
latency at the cost of extra traffic. It turned out that many of
those techniques improved contention-free latency by generat-
ing more traffic, which put pressure on the memory subsystem
and processor package interfaces. That observation led us to
extrapolate the growth in bandwidth requirements, and to see
whether technology trends would accommodate that growth.
From the vantage point at the time, it did not appear as if
those trends could accommodate the growth in requirements.

Next, we decided to see how effective an ”ideal” cache
could be at reducing traffic, to understand how much better
on-chip memory management could reduce memory traffic
as computational ability outstripped the package’s ability to

feed it data. The ”minimal traffic cache” was a theoretical
construct that, for a given on-chip capacity, would generate
the minimal possible off-chip traffic. While not realizable
in practice due to its use of Laszlo Belady’s famous MIN
algorithm [1], that study showed that off-chip traffic could
be reduced enormously, in some cases by over two orders of
magnitude, if the on-chip memory, even as limited as it was
at the time, could be better managed by the hardware and/or
software.1

Finally, the mismatch we projected between package band-
width and off-chip traffic requirements led us to predict that
some set of four directions would materialize to address this
problem. The four evolutions of processor+memory archi-
tecture we thought most likely, given the bandwidth scaling
analysis, were:

1) Tighter integration of system DRAM and the processor
die, initially in multi-die packages and then eventually
on the same chip.

2) Emergence of production processing-in-memory (PIM)
architectures, where some high-bandwidth functions
would be moved onto the DRAM dies.

3) More complex and effective management of the on-
chip memories, leveraging different access patterns and
perhaps more software control.

4) Compression in the cache memories, allowing greater
effective usage of the on-chip memories.

As is often the case the paper got several things right and
several things wrong about how the future would unfold. The
rapid growth of clock rates came to an end fewer than ten
years after publication, capping the rapid growth in memory
latencies. The end of Dennard scaling a few years later caused
power to be a major problem as transistor counts grew. This
shift made much larger on-chip memories (”dim silicon”)
desirable, as it was not possible to use the same fraction
of logic for high-performance computation. Even as CPU
core counts grew, particularly for task-based parallelism in
data centers, the increased on-chip memory sizes and natural
improvements in pin signaling speeds and counts allowed the
processing/bandwidth ratios to remain balanced. This shift
reduced the need for the most radical changes to proces-
sor+memory architectures.

1As an aside, one of us (Doug Burger) ended up collaborating at Microsoft
with Christian Belady, the son of Laszlo Belady, co-authoring a US patent on
wind-powered data centers.

1



The least disruptive approach for improving bandwidth
(and latency) was the one that—perhaps unsurprisingly—
focused on better cache management. Indeed, the research
community has produced many great ideas for managing
caches more effectively, including in multicore designs. These
ideas included dead block prediction [3], non-uniform shared
caches, sophisticated prefetching techniques, and advanced
replacement policies such as Re-reference Interval Prediction
(RRIP) [2] and Dynamic Insertion Policy (DIP) [6] (to name
two of our favorites). At the time, it was not widely understood
that most data in a cache are ”dead” (will be evicted before
being re-used), although Thomas Puzak made this observation
in his 1985 doctoral dissertation [5] a decade earlier. Cache
designs at the time did not have advanced techniques for
reducing the dead space, but these improvements found ways
to reduce the dead space, using more complex but effective
mechanisms to improve hit rates and thus cut down on memory
bandwidth requirements. We like to think that our paper
added to the community’s shared understanding of important
memory system problems and thus contributed to those cache
advancements in an indirect way.

The two other architectural directions that we predicted
did not materialize—at least widely. Compression of the
caches (so far) has not managed to become a widely used
solution, as simpler solutions seemed to be sufficient. The
complexity of managing variable compression outcomes in a
memory that needs fast, high-bandwidth access (often with
coherence) has thus far outweighed the improved storage
benefits. However, excellent research continues in this space
with improving results [4]. Processing in memory (PIM) ar-
chitectures have also failed to emerge as a widespread solution
to reducing memory overheads. Moving to PIM architectures
would require significant changes to commodity technologies
(DIMMs), and would demand the adoption of programming
and computational models that worked well over a wide
enough span of workloads to justify the added complexity
and investment. While many researchers and some companies
continue to investigate PIM solutions, we view their near-term
adoption to be unlikely for commodity CPU workloads.

The central prediction that we made in the paper was
also (mostly) incorrect. Given the trends, it seemed likely to
us that processors and memory would merge into integrated
chips. That merger clearly did not happen, for several rea-
sons that are well understood given how the field evolved.
High-performance logic and DRAM manufacturing processes
continued to diverge, making the penalties (memory den-
sity or circuit speed) for integrating processing and memory
higher than they had been. The slowing of performance gains,
the emergence of power limits, the larger on-chip memory
systems, and the increasing sophistication of those memory
systems made a more incremental evolution sufficient. It did
turn out that for bandwidth hungry workloads (as we pointed
out) such as graphics, and now AI, co-packaging of processing
chips and DRAM (as stacked high-bandwidth memory, or
HBM) were necessary to provide sufficient bandwidth. Those
workloads need more data per byte than CPU workloads with

large caches, and thus the power issue did not preclude the
need for in-package memory, unlike with CPUs.

II. LOOKING FORWARD

The key contributions of the paper were a model for
reasoning about raw latency versus bandwidth penalties—
helping to reason about memory system performance—and
a strong bound on how effectively on-chip memory could
reduce off-chip traffic with the minimal traffic cache. Most
of the predictions the paper made did not end up coming to
pass, aside from increasingly effective cache designs and co-
packaged memory for accelerators.

While we were writing this retrospective, it occurred to us
that we are actually now back where we started, except with
AI workloads rather than CPU workloads. For generative AI,
particularly the token phase, bandwidth has become the central
limiter. Although We do not expect on-die processor/system
memory integration for AI, 3D stacking of processing and
memory is the next logical step after HBM. More aggressive
on-die integration may be desirable if the research community
is able to design in situ learning algorithms that are more
similar to biologically-inspired neural computing. In our view
it is more likely that the algorithms shift to optimize for the
processing and memory interfaces currently available while
pushing hard on improved capabilities. It will be interesting to
see if the relationship between processing and memory plays
out the same way in the ”inflationary AI era” as it did in the
”inflationary CPU era.” As the old saying goes: History does
not repeat itself, but it rhymes.

REFERENCES

[1] L. A. Belady, “A study of replacement algorithms for a virtual storage
computer,” IBM Systems Journal, vol. 5, no. 2, pp. 78–101, 1966.

[2] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High
performance cache replacement using re-reference interval prediction
(RRIP),” in Proceedings of the 37th Annual International Symposium on
Computer Architecture. New York, NY, USA: ACM, 2010, pp. 60–71.
[Online]. Available: https://doi.org/10.1145/1815961.1815971

[3] A.-C. Lai and B. Falsafi, “Dead block prediction & dead block correlating
prefetchers,” in Proceedings of the 28th Annual International Symposium
on Computer Architecture. New York, NY, USA: ACM, 2001, pp.
144–154. [Online]. Available: https://doi.org/10.1109/ISCA.2001.937443

[4] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Linearly compressed pages: A
low-complexity, low-latency main memory compression framework,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture. New York, NY, USA: ACM, 2013, pp. 172–184.

[5] T. R. Puzak, “Analysis of cache replacement-algorithms,” Ph.D.
dissertation, 1985, aAI8509594. [Online]. Available: https://scholarworks.
umass.edu/dissertations/AAI8509594

[6] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr., and
J. Emer, “Adaptive insertion policies for high performance caching,” in
Proceedings of the 34th Annual International Symposium on Computer
Architecture. New York, NY, USA: ACM, 2007, pp. 381–391. [Online].
Available: https://doi.org/10.1145/1250662.1250709

[7] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH Computer Architecture News, vol. 23,
no. 1, pp. 20–24, 1995.

2


