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1. TECHNICAL BACKDROP

The mid 1990s saw the introduction of the first out-of-order
microprocessors. Prior to their introduction, the execution cost
of an instruction was directly proportional to the latency of that
instruction (modulo a cycle or so due to superscalar effects).
Le., a single cycle instruction added about 1 cycle to execution
time, a 50-cycle load miss added about 50 cycles. In out-of-
order machines, that was no longer true. Many instructions had
no impact on execution time (e.g., if they were executed a few
cycles slower, performance wouldn’t change), others would
have their full latency exposed, and some fell in between.
This high variance in importance, or criticality, was a new
phenomenon. However, the processor pipeline had no ability
to distinguish between instructions whose latency impacted
performance and those that did not.

In fact, in a theoretical machine with infinite capacity for
parallel execution, only instructions on a single dependence
path matter to execution time. All other instructions would
have no impact. Even better, with register renaming, only
true data dependencies contributed to that path. Our work
introduced the idea that it would be valuable to know which
instructions were on that critical path.

While we, and others, would pursue that concept in much
more general ways, in this first work we found the relatively
new idea of value prediction to be a perfect testbed for
focusing in on the critical path. This is because, rather than
just accelerate an independent instruction, value prediction had
the ability to break true data dependencies.

Value prediction broke true data dependencies by predicting
the result of an instruction’s computation before the instruction
finished execution. There was significant gains possible on
a correct prediction of the right instructions, but prediction
was not without its risks. An incorrectly predicted instruction
would not only waste power and processor utilization, but it
would also require architectural state recovery to return to
correct execution.

Value prediction had tremendous potential - but would it
be beneficial to value predict every instruction? Imagine a
dependence chain comprising a load instruction, followed by
an add instruction, followed by another load instruction, and
ultimately followed by a store instruction. Predicting all four of
these instructions would have diminishing returns - and worse,
a single misprediction could undue any benefit from correctly
predicting the other instructions. Conventional wisdom held

that long-latency loads were the highest priority for prediction,
and in fact predicting the first load allows the two loads to
execute in parallel, providing a large gain. However, correctly
predicting the intervening add instruction also allows the two
loads to proceed in parallel, with the same benefit. Thus, the
add’s importance is not derived from its latency, but its position
on the critical path.

II. CONTRIBUTIONS OF THE PAPER

Most of the work that followed the initial papers on value
prediction concentrated on more accurate predictors. This
paper took a very different approach. We started with the
assumption that we had limited resources, in particular limited
prediction table size. As a result, we needed to be selective
about which instructions actually used, or wrote into, the value
tables. Additionally, we saw value in limiting the number
of predictions outstanding in the machine — too many, and
the likelihood of misprediction would quickly nullify any
gains from the correct predictions. Viewed differently — a
prediction of an instruction not on the critical path provides
no performance gain, but a misprediction of that instruction
gives performance loss.

The paper looks at various ways to filter instructions writing
into the value table, or consuming table entries to make a
prediction. These include the most standard approaches (all
instructions, all loads), but also includes skipping instructions
whose destination is not sourced within the processor’s in-
struction window, and several instantiations of ”on the critical
path”. One version considers any instruction on the longest
path within the current window of unexecuted instructions (i.e.,
decode to issue). Another marks any instruction at the head of
the longest path (of a certain length in cycles) at any time in
execution. Once marked, an instruction becomes a candidate
for value prediction each time it enters the pipeline.

One interesting early result was that even in an infinite table
with oracle confidence — so there is no value to selectivity
either in placing values in the table or in making predictions
(since there are no mispredicts) — applying a path based filter
provided essentially the same performance as having no filter.
This validated the contention that there was virtually no gain
to value predicting instructions not on the critical path.

In the presence of limited table size and possible mispre-
dicts, the value of selectivity comes into play. In that case,
filtering instructions (either those that write to the value table



or those that use those values) with path-based criteria con-
sistently outperformed filtering for long latency (i.e., loads).
Note that this paper did not speculate on how to practically
detect the criticality of instructions; that was left to later work.

The other issue we focused on addressing was how to have
confidence in the prediction. We explored value prediction
mechanisms that were based on a stride pattern (a fixed delta
between subsequent values) and based on a repeating pattern
of values (a context predictor). Other prediction mechanisms
could certainly be employed, and could benefit from the
techniques proposed in our paper.

In addition, we designed a set of confidence counters:
structures that could predict the success of the value predictors
for a given instruction based on historical data. Even in the
face of infrequently predictable instructions, the confidence
counters could accurately determine when to use the prediction
- the crucial insight was that even if the value predictor could
not capture a particular access pattern with high accuracy, as
long as we could accurately capture when the value predictor
would be right or wrong in its prediction, would help to avoid
the misprediction penalty. Prediction is not a requirement for
functional correctness, and judicious application of prediction
is crucial in mitigating its deleterious effect on performance.

III. IMPACT OF THE PAPER

This paper introduced the idea that if we could identify
instructions that were on the critical path, we could treat them
differently and make better use of limited pipeline resources. It
also identified the fact that limited instruction window size (as
defined by any of several specific structures like the instruction
queue, reorder buffer, physical register file, etc.) necessitated
a more local view of the critical path. That is, an instruction
on the theoretical global critical path could be prevented from
entering the window because a prior instruction has not yet
executed (rendering the instruction queue full) or committed
(rendering the reorder buffer full). Thus, that instruction and
instructions it depends on are now part of the critical path.

These two concepts were critical to an entire research area
devoted to identifying those instructions on the critical path —
critical path prediction. Our paper [5] introduced the idea of
critical path prediction, exploiting clues within the pipeline to
identify instructions likely to be on the critical path. Later that
year, Fields and Bodik [2] sought to carefully track the critical
path itself, accounting for all of the structural hazards that
could create artificial dependencies and place an instruction
on the critical path.

A number of papers followed from both groups and others
that continued to refine this idea of effectively tracking the
critical path, and finding new ways to exploit that information
in the pipeline.

IV. CURRENT STATE

Value prediction has been used to provide performance
gains as a feedback-directed optimization using Value Pro-
filing [1] and evaluating the potential path for optimizing the
critical path [3], [4], [6] of the program to improve execution.

Value prediction as a hardware optimization was a promis-
ing technology that never saw its way into real processor
designs, likely a victim of the architectural “energy crisis”,
as power and energy became first class design constraints.
Under those constraints rampant speculation, just because the
processor had nothing better to do, fell out of favor. To our
knowledge no processor takes significant advantage of the
variance in instruction criticality, and that variance is higher
than ever in today’s large-window processors.

We still consider this a missed opportunity. Value predicting
the critical path was always the best target for this, but it was
far from the only one. Some of those potential optimizations
decreased speculation or power (e.g., slower functional units
for instructions with slack) — optimizations that still match up
with today’s design priorities.
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