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I. SERENDIPITOUS CONFLUENCE OF NEW AND OLD

In 2008, parallel computing posed significant challenges due
to the complexities of parallel programming and the bottle-
necks associated with efficient parallel execution. Inspired by
the remarkable scalability achieved by networking and storage
systems in handling extensive packet traffic and persistent data
respectively by leveraging best-effort service, we proposed
a new and fundamentally different approach of best-effort
computing [1].

Having observed that a broad spectrum of existing and
emerging computing workloads were from applications that
had an inherent forgiving nature [2], [5], we proposed best-
effort computing. The new approach resulted in dispropor-
tionate gains in power, energy and latency, while improving
performance.

While contemplating the concept of best-effort comput-
ing [2], we noticed the resurgence of convolutional neu-
ral networks, which generated approximate but acceptable
outcomes for numerous recognition, mining, and synthesis
tasks. The lead author of this retrospective had previously
conducted research on neural networks for his doctoral dis-
sertation over a decade ago, and the reemergence of neural
networks proved both surprising and exciting. Recognizing the
connection between best-effort computing and convolutional
neural networks, in 2008 we embarked on developing a
programmable and dynamically reconfigurable convolutional
neural network capable of performing best-effort computing
for various machine learning tasks that inherently allow for
multiple acceptable answers. This combination of our thoughts
on best-effort computing and the gradual evolution of convo-
lutional neural networks (deep neural networks emerged much
later) culminated in our 2010 ISCA work on dynamically
reconfigurable convolutional neural networks.

II. ADDITIONAL MOTIVATION FOR THIS WORK

Besides best-effort computing, the early 2000s saw broader
trends like specialized chips becoming expensive requiring
very high volumes to justify production. In addition, FPGAs
were becoming more widespread and starting to handle com-
plex workloads. FPGA chips offered significant amounts of
low-latency on-chip memory, fast interconnection networks,
and complex processing elements. Applications that utilized
machine learning, and in particular convolutional neural net-
works (CNNs), were on the rise, especially in the image
processing domain.

Around this time, NEC had already deployed products in
image recognition and processing. This, along with interest
from customers and best-effort computing, spurred forward-
thinking research at NEC’s US research facility, which resulted
in this work. One of our objectives was to address the limi-
tations of state-of-the-art processors at that time, particularly
their inability to perform real-time complex pattern recognition
in QVGA video. To tackle this challenge, we utilized an
FPGA that could be reprogrammed to accommodate a specific
convolutional neural network (CNN) architecture. This archi-
tecture incorporated essential components such as convolution
units, dedicated sub-sampling logic, and nonlinear functions.
To program this FPGA-based architecture, we employed very
long instruction word (VLIW) instructions generated by our
CNN compiler. The results were promising, and we achieved
significant speedups over multi-core processors of that era.

III. FOLLOW-UP ON OUR WORK

Since its initial publication, our work has garnered nearly
500 citations, illustrating its significant impact in the field.
Several of these focus on mapping Convolutional Neural Net-
works (CNNs) to Field-Programmable Gate Arrays (FPGAs)
or specialized custom hardware, and use compiler optimiza-
tions such as loop tiling to maximize FPGA performance [6],
energy-efficient hardware designs [3], and designs that trade
off accuracy to handle computationally and memory-intensive
CNN layers. This is a testament to the continued importance
of high performance for CNNs. Furthermore, the emphasis on
addressing CNN bottlenecks and limitations through lower-
level hardware enhancements, rather than relying solely on
software advancements, still remains a promising direction in
ongoing research.

IV. WHAT WE GOT RIGHT, AND WHAT WE DIDN’T

One of our observations was that because CNN topologies
are so diverse in terms of the parallelism opportunities they
offer, it made sense to tailor the hardware to a specific
network. It was (and still is) impractical to build a chip
for each network, but FPGAs offered us the ability to dy-
namically reconfigure the hardware on a per-network basis.
Reconfigurability provided us flexibility and performance; we
leveraged it to deal with an aspect of Moore’s law where on-
chip compute capability scaled faster than off-chip memory
bandwidth. Fast-forwarding a decade and some years, some
amount of reconfigurability is present in compute clusters



today, but interestingly, FPGA-based accelerators are being
seen as one choice to deal with the slowing of Moore’s law.
A somewhat different rationale, but a similar end result.

The other aspect that we got right was the use of a loosely-
coupled coprocessor (that did not share memory with the host)
for these types of workloads. The trend to use coprocessors,
along with high off-chip memory bandwidth, have both been
identified as important in the years following our publication,
although our paper was likely not the only trigger for this
trend.

We didn’t really propose an alternative to the Von Neumann
model of computation. Our architecture still leveraged memory
to store intermediate data (some on-chip and some off-chip).
More recent innovations in this space, such as the Tensor
Processing Units (TPUs) [4] that were introduced around 2016,
deployed systolic architectures to get around the memory
bottleneck for neural network workloads. In effect, a different
computation model from the traditional Von Neumann archi-
tecture has seen success.

We also didn’t quite get the granularity and specificity
of the hardware right: our solution was very tailored for
CNNs in the sense that the hardware looked a lot like a
CNN with convolvers, non-linearity, and so on. The success
of hardware that is highly fine-tuned to this extent depends
on how ubiquitous the application turns out to be. Machine
learning is ubiquitous now, but it’s more than just CNNs. So in
retrospect, a little more generality could have taken us further.

V. EVOLUTION OF HARDWARE ACCELERATORS

Since the publication of our work in 2010, hardware ac-
celerators for convolutional neural networks (CNNs) have
made notable advancements, leading to significantly improved
performance. Nevertheless, two fundamental aspects have re-
mained consistent throughout these developments. First, hard-
ware accelerators leverage the inherent forgiving nature of
numerous Al applications, allowing them to exploit efficiency
gains. Second, the diversity in CNN models, encompassing
variants such as transformers, underscores the necessity for
practical hardware accelerators with dynamic reconfigurability.
This ensures that the accelerator can adapt to different CNN
models.

Graphics Processing Units (GPUs), originally designed for
computer graphics, became popular for accelerating deep
learning tasks, including CNNs. Since 2010, GPUs have
continued to improve in terms of computational power, mem-
ory capacity, and memory bandwidth, making them a stan-
dard choice for accelerating machine learning tasks. Going
further, Tensor Processing Units (TPUs) which are specif-
ically designed for learning offer significant speedups over
GPUs for those tasks. And recently, companies like Apple
and Qualcomm have integrated CNN accelerators into SoCs
(system-on-chip) to enable efficient on-device Al inference.
This integration reduces power consumption, latency, and data
transfer requirements, making CNN inference more practical
for mobile and edge devices.

Field-Programmable Gate Arrays (FPGAs) have gained
attention as flexible and programmable hardware accelerators
for CNNs. They can be reconfigured to implement custom
CNN architectures, and FPGAs have improved significantly
in terms of resource utilization, memory bandwidth, and
programmability since 2010.

Neural Processing Units (NPUs) have emerged as special-
ized hardware units designed specifically for neural network
computations. They often include custom-designed processing
elements optimized for CNN operations, such as convolution,
pooling, and matrix multiplications.

Today, best-effort computing continues to enhance computa-
tional efficiency, and hardware accelerators continue to incor-
porate support for low-precision operations and quantization
techniques. By using reduced precision for weights, activations
and computations, these accelerators continue to exploit the
inherent forgiving nature in recognition, synthesis and mining
tasks. They routinely achieve higher throughput and energy
efficiency without significant loss in accuracy, and dynamic
reconfigurability is still as essential as we observed in 2010!

It is refreshing to see that although our work was done
almost 15 years ago, there is continued enduring focus on
leveraging forgiving nature and addressing dynamic reconfig-
urability in modern hardware accelerators for Al applications
beyond CNNs.
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