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I. THE PAST: ECONOMICAL AND HISTORICAL CONTEXT

Economic context. Historically, architectural advancements in
conjunction with device improvements realized the twin benefits of
Moore’s law and Dennard scaling — a doubling of the performance
of general-purpose microprocessors on a consistent two-year
cadence. Until the early 2000s, the computing industry benefited
enormously from this consistent, exponential growth in singled-
threaded performance. The consistency of these performance
improvements enabled powerful computing to become a commodity,
reaching masses of developers and generating a Cambrian explosion
in the domains and uses of computing. The continued performance
growth allowed the computing industry to operate on the economics
of new capabilities (growing markets), rather than the economics
of replacement in a stable or saturated market.

By providing higher performance for general-purpose computing

at a fixed cost, computer architecture advances were then, and still
are, a key enabler of the computing industry’s economic cycle. That
is, our innovations enable software to harness technology advances
into new capabilities.
The multicore era. In the early 2000s, the decline and eventual
end of Dennard scaling benefits (for devices below 32nm) became
clear. There was also a growing awareness that single-thread
performance growth would slow appreciably below historical
trends. Facing the clear need to continue growing capabilities, with
acceptable disruption to software, the computing industry pivoted
to a multicore strategy. That is, increasing the number of cores per
die each generation to continue performance improvements, while
sustaining small improvements in single-core efficiency. Shortly
before we began the investigation that led to this paper, some of
us attended a panel at HPCA 2008. The majority of the panelists
expressed the view that exponential increases in CPU core counts
(as many as thousands of cores on a chip), would be the principal
way to scale general-purpose performance going forward. The
majority also agreed that the community must solve the software
parallelization problem to get there. That consensus inspired us to
investigate whether traditional parallel computing approaches were
a viable path forward in an era of power-limited silicon.

Combining the insights of device scaling with architecture trends,
there was a growing concern that the failure of Dennard Scaling
meant that power would not scale down proportionally as the
core count increased across technology generations. However, the
severity of the issues at the transistor level and how those would
play out with respect to core scaling and application parallelism
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was not well understood at the time. The main question that we
tried to address was: How effective would multicore designs be in
a power-limited era, for differing degrees of parallelism?

II. TECHNICAL SUMMARY

To answer this question, the paper generated a ten-year
performance scaling projection for future multicore designs through
a model containing multiple factors. The multicore modeling took
into account transistor scaling trends, processor core design options,
chip multiprocessor organizations, and benchmark characteristics,
while applying area and power constraints at future technology
nodes. The model combined these factors to project the upper
bound speedup achievable through multicore scaling under various
technology scaling trends. The paper’s principal result showed that
the power issue, even assuming simpler cores, would result in lower
utilization of the silicon (dark silicon) — the fraction of the chip that
must be powered off to meet power constraints. Dark silicon was a
useful concept and term to illustrate the challenge. However, it was
unclear to us whether the power limits would result in designs with
substantial fractions powered off, smaller chips, or lower average
activity factor across active silicon. This result appeared to us to in-
dicate that techniques other than traditional multicore scaling would
be required to advance application performance. This conclusion
was counter to the directions many in the architecture community
were pursuing at the time. The paper’s modeling considered the
trends from 2008, when 45 nm microprocessors were available, to
2018. The evaluations showed that with optimistic projections from
International Technology Roadmap for Semiconductors (ITRS),
only 7.9x average speedup would be possible for commonly
used parallel workloads. This limited improvement would leave
a nearly 24-fold gap from a “doubled performance per generation”
expectation. This gap would grow to 28-fold under conservative
scaling projections where only 3.7 x speedup would be achievable.

Based on these results, we predicted that power limits and
imperfect parallelism would drive a shift in architectures—that
parallel applications running on an increasing number of CPU
(or GPU) cores would not be the principal vector of performance
scaling. Without a shift, it seemed unlikely that historical levels of
application performance increases would be viable.

Origins of the term “Dark Silicon”. Dark Silicon became a popular
term used as short-hand for the limited power problem. In 2010,
we had been explicitly thinking of a good term to capture this
phenomenon. The best we came up with was “pinhole processing,”
but it was insufficient. In a 2010 meeting with ARM, their then-CTO,



Mike Muller, referred to the concept as “dark silicon” and it was
clearly the right term. We did not coin the term, we got it from Mark.

At that time, we were not the only researchers exploring and
modeling this phenomenon. Concurrently to us, Hardavellas ez al.
were investigating dark silicon and multicore scaling in servers [1].
Also, Conservation Cores [2] considered the utilization wall that
leads to dark silicon.

III. THE PRESENT: THE POST MULTICORE ERA

Multicore architectures (in the sense of scaling the number of
CPUs) did not end up being the primary vehicle for accelerating
applications. However, high core counts did become extremely
important for task-level parallelism as a means to improve the
cost efficiency of virtual machines in datacenters. Today, multicore
chips are ubiquitous at every level with task parallelism being the
primary use case. Today, even on multicore architectures, we do
not see large swaths of the chip being “dark.” We instead see dim
silicon, with large areas of the chip devoted to caches alongside
the use of aggressive voltage/frequency scaling. We continue
to see modest inter-generational ( 10%) improvements in CPU
performance, which come from both process scaling and continued
microarchitectural improvements.

Specialization and ISAs The timing of this paper shortly proceeded
a rapid rise of research and development in Domain-Specific Archi-
tectures (DSAs). This shift would certainly have happened without
this paper. Much of this paper’s visibiliy was due to timing, it was
published between the widespread “multicore consensus’ in the late
2000’s and the rise of large-scale deployments of accelerators start-
ing in the mid 2010s. It is important to note that multicore consensus
was correct; however, in its focus on parallelism. All of the special-
ized accelerators leverage parallelism in different ways. These forms
of parallelism have mostly departed from parallel CPU ISAs running
on many general cores. Instead, accelerators leverage different un-
derlying parallelism models with higher-level software frameworks
such as Pytorch expressing domain-specific parallel semantics.

Deep learning - a pleasant surprise. While we predicted that
neither CPU-like or GPU-like multicore designs were sufficient
to deliver the expected computing advancements, the computer
architecture community (and many other communities) did not
anticipate the rapid adoption of specialized hardware for Deep
Neural Networks (DNNs). Deep learning was starting to emerge at
the time this paper was published, but differed significantly from
the structure of traditional parallel workloads. These workloads
are embarrassingly parallel, with ample amounts of optimization
opportunities in the memory system, arithmetic, computing silicon,
and at the system level. The rather general applicability of deep
learning to numerous use cases in various industries, such as
healthcare, finance, and automotive, justify the economics of
specialization for this domain. The economics of this trend are so
powerful that CPUs, GPUs, and FPGAs now all include some form
of specialization for deep learning, and chips, such as Google TPUs
and Amazon Inferentia/Trainium, are built by software companies
entirely for deep learning. GPUs have since become the dominant
architecture for accelerating deep learning. Successive GPU gen-
erations spanning 28 nm to 7 nm (Tesla, Pascal, Volta, Ampere,
Hopper) have increased sustained performance on deep learning by

16x in a decade. The deep learning revolution has been fueled by a
virtuous cycle of rapid algorithmic, hardware, and software changes.
Approximate computing. Another example of an avenue of radical
innovation that continues to unfold is that of approximate computing.
While accelerators relax the long-held ISA abstraction, approxima-
tion relaxes the notion of perfect precision. Examples of approximate
computing include reduced bit arithmetic, dual-voltage calculations,
stepping over computation, computation substitution with less-
precise alternatives, value prediction, transforming imperative code
to neural networks for digital and analog implementation, etc.

IV. THE FUTURE

When we were writing the paper in 2010, we were thinking about
how the end of Dennard scaling would affect the major directions
in computer architecture. We were asking whether multicore chips
would be the dominant path forward or whether there would be a
shift. Core counts did continue to increase, cloud computing grew
enormously in importance, mobile devices became more capable,
and many specialized extensions to CPUs enabled these classes of
computing. In retrospect, the biggest disruption has been driven
by algorithms, particularly deep learning and generative inference.
Increasingly deep learning seems to be becoming a “second great
computing platform” (imperative code running on CPUs being the
first). This new workload is driving rapid changes in architecture,
algorithms, and systems, akin to the level of computer architecture
innovation in the 1960’s and 1970’s. In the past we thought of these
workloads as “specialized computing.” We think it will increasingly
be seen as a second class of general-purpose computation. The class
that relies on statistical pattern identification rather than determinism.
The small-to-negligible improvements in CMOS power efficiency
still pose a challenge, which may motivate more radical innovations
in computer architecture: photonics, quantum computing, analog
computing, and biological computing with neurons could emerge
as a cross-cutting enabler to address the continuing power challenge.
‘When we wrote this paper, we predicted an inflection point and a
shift in architectures. Deep learning and generative Al, fueled by
data,is likely driving another inflection point in how data are gen-
erated, consumed, monitored and monetized. Some prognosticators
compare this shift to seismic changes like the industrial revolution.
Computer architecture innovations fuel these changes and their
economic benefits, as we build the abstractions and mechanisms
that harvest physics to transmute data to these new capabilities.
Our collective work has been instrumental in making CPU-based
computing, and now Al (currently GPU)-based computing, an
integral part of the human experience. For computer architecture,
there are exciting questions regarding not only how to enable these
capabilities, but also how to make use of them responsibly.
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