
RETROSPECTIVE:
DAISY: Dynamic Compilation for 100%

Architectural Compatibility
Kemal Ebcioğlu and Erik R. Altman

I. MOTIVATION

DAISY grew out of earlier VLIW experience at IBM
Research where promising designs had the Achilles heel
of not being able to run existing software. Dynamic and
hidden translation of binary code for an existing ISA such
as PowerTM to a simple VLIW architecture by a just in-time
VLIW parallelizer seemed to be an appealing and tractable
way to address this compatibility issue.

Both Power and any migrant VLIW machine – as the paper
termed the target of the exercise – were practically Turing
machines of course, so the ability to run Power programs
was never in doubt – only the ability to do so with improved
performance and low overhead. Low overhead included both
software translation overhead and any chip area needed purely
for compatibility reasons.

II. DAISY APPROACH

We began by examining our existing VLIW compiler in-
frastructure. Prior to DAISY the focus was almost completely
on using a static compiler to extract as much ILP as possible
from the code to be run. Prior to DAISY that code was in
source or intermediate code form as with any other compiler.
With DAISY the focus shifted in two ways: (1) Dynamic
compilation was used facilitate handling of issues difficult
in static code translation, e.g. identifying all possible code
fragments or self-modifying code. (2) Instead of maximum
ILP extraction, the goal became “good enough”. Initial inves-
tigations showed promise for “good enough”, e.g. operations
like global instruction scheduling, loop unrolling, and software
pipelining were doable – typically with greedy algorithms –
with two orders of magnitude less compiler overhead, while
losing only 10% - 20% of potential ILP, as we reported in the
paper.

We then moved to address the many challenging architec-
tural areas that a traditional static compiler can ignore. These
challenges included self-modifying code, precise exceptions
for page faults and other cases, memory-mapped I/O, and
strong multi-processor memory consistency. We note that even
translating from Power – a relatively modern architecture for
the time – self-modifying code was an issue, as it must be
for essentially any architecture. For example, Java JITs may
produce new and improved code, and even static code pages
are “modified” when code is first loaded into the page, or later
when completely different code is placed on the same physical
page. And because DAISY aimed for “100% architectural

compatibility” with Power, it had to handle operating system
pages and even pages where address translation is not used –
a situation that occurs quite a bit during system boot, another
area DAISY had to support for 100% compatibility.

The paper details how we dealt with these challenges, and
we do not repeat that here. However, we do note the impor-
tance for high-performance of co-designing the migrant VLIW,
the translation software, and the VMM (Virtual Machine
Monitor), all with the original base ISA in mind. In addition ,
the VLIW targeted by DAISY used the same layout as Power
for integer, floating point, and condition code registers, as
well as other more obscure but Power-architected registers
like XER and FPSCR (integer and floating point exception
registers). Although the layout was common, as a feature
for increasing parallelism, DAISY used larger numbers of
registers than Power, e.g. 64 integer and floating point registers
instead of the 32 provided by Power. This increased number
allowed us to put speculative results in the 32 registers not
provided by Power, and then copy results to the register used
by Power in original (binary) program order. This example
also illustrates the value of co-design as noted above.

DAISY’s dynamic binary translation also revealed things
that were much better than compiling from source or inter-
mediate code. Transparent, always-on profiling is an obvious
example. A perhaps less obvious case is alias analysis. DAISY
did only rudimentary alias analysis, but when in doubt about
aliasing DAISY speculated loads above stores – opposite the
normal static requirement. As detailed in the paper we could
dynamically detect and recover when such speculation failed.
In practice it rarely did. In the Spec95 benchmarks available
at the time, less than a dozen static load sites accounted for
all of the misspeculated loads, and we then just dynamically
rescheduled those loads not to speculate.

III. OBSERVATIONS

After the DAISY paper we continued our efforts. We built
up the system sufficiently to boot a PowerPC 604e worksta-
tion using DAISY and run standard applications on it. That
follow-on exercise revealed many hidden corners of the Power
architecture, e.g. (1) when is single-byte access required for
the string instructions like LSCBX that were in the Power
architecture; (2) how to deal with power-on-self-test during
boot that turns off all but one memory bank – and hence
sometimes powers down the memory used by DAISY; and
(3) how to deal with micro-architecture specific registers like

1



HID0 that can do things such as controlling cache associativty.
The presence of such registers mean that at the periphery
dynamic binary translation must account not only for the ISA,
but the microarchitecture for which it is co-designed. Shortly
after the DAISY paper Transmeta had to deal with such issues
in emulating the ubiquitous Northbridge and Southbridge used
for I/O in the x86 architecture. More broadly, ISA emulation
alone is probably not enough for 100% compatibilty: the
standard I/O architecture must also be emulated.

In the final analysis, IBM decided not to use DAISY in a
product. However, DAISY became a well-publicized research
effort of IBM. Furthermore, many of the DAISY techniques
were used in a variety of successful offerings from Java JITs
to HP’s Dynamo offering to speed software on the same
architecture. And Transmeta showed the world that dynamic
binary translation could be commercially viable, at least for a
time.

Looking forward, will dynamic binary translation rise
again? With the slowing of scaling and the end of frequency
scaling, we see a proliferation of accelerators and even ISAs.
Will it be economically important at some point to coalesce
this “zoo” of offerings into a smaller number of unified
designs? Although the phrase did not make it into our paper,
we viewed DAISY as making “ISA a layer of software” and
enabling efficient emulation of not just one, but many ISAs on
a single migrant design. Perhaps we were just a few decades
early in promulgating this view.

A traditional out-of-order processor is in fact an efficient
hardware implementation of a run-time interpreter and sched-
uler of instructions of an ISA. A disruptive research direction
taken by DAISY was moving run-time interpretation and
scheduling of instructions to compile time, therefore achiev-
ing simplification of the target hardware, and allowing new
architecture features for increasing parallelism to be freely
added to the target hardware without being encumbered by
the restrictions of the base ISA. For example, the DAISY
VLIW architecture which executes VLIW tree instructions
with conditional execution, described in figure 1 in the paper,
can be seen as an interpreter of a simple Mealy finite state
machine whose states correspond to VLIW tree instructions.
Going further in the direction of replacing interpretation by
compilation, a next research stage in binary translation could
very well be: at the higher optimization tiers, targeting not a
finite state machine interpreter like the DAISY VLIW, but the
hardware design of a much wider/larger finite state machine
(or other customized hardware) itself, implemented with FP-
GAs, or, in a future where inexpensive rapid transformation to
ASIC becomes possible, with ASICs. The industry has been
addressing performance needs of specific applications by man-
ually designing ASICs and optimized software libraries (e.g.
TensorFlow), with intense specialized effort, while general-
purpose microprocessor designs have been continuing on an
evolutionary path. However, we believe that improving the
performance of general-purpose code by further removing
run-time interpretation and scheduling overheads and adding
new features to the target hardware for removing barriers to

parallelism, while maintaining compatibility with a base ISA,
remains an important research direction.

2


