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Traditional computer designs have always distinguished
between the roles of storage and computation. While mem-
ories and caches are responsible for data storage, processors’
logic units handle computation. But is this segregation
indispensable? The human brain doesn’t distinctly demarcate
between the two functions. So, why should a processor? Our
work raises this fundamental question regarding the role of
caches.

A New Design Paradigm. Until today, caches have
served only as an intermediate low-latency storage unit. Our
work directly challenges this conventional design paradigm,
and proposes to impose a dual responsibility on caches:
store and compute data. By doing so, we turn them into
massively parallel vector units, and drastically reduce on-
chip data movement overhead.

Our work has its roots in the processing-in-memory (PIM)
line of work [1]. PIMs move logic near main memory
(DRAM), and thereby reduce the gap between memory and
compute units. Neural Cache in contrast, morphs cache
(SRAM) structures into compute units, keeping data in-
place.

Developing the idea. The idea has its foundation in our
prior work, Compute Cache [2]. With Compute Cache, we
established the feasibility of logical operations on SRAM
bit-lines and demonstrated a handful of use cases. However,
after Compute Cache was published, critical questions re-
mained unanswered: Can this technology support more than
logical operations? What would be a killer application?

An insight then dawned on us - if we can execute
logical operations in SRAM, we should also be able to
perform complex arithmetic using in-memory logical oper-
ations. For a while, we were hindered by the complexity
of bit propagation among bit-lines, which undermined the
beauty of the proposition. In fact, we even attempted analog
computing. However, without the use of expensive ADCs,
this technology failed miserably due to variation effects.

The idea of using bit-serial computation was our break-
through while scourging through older digital logic lit-
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erature. Our work took a unique architectural approach
to in-memory computing by employing compact bit-serial
logic over transposed data. It processes one bit at a time,
eliminating the need for expensive ADCs and enabling
higher precision. Since only a binary value needs to be
sensed every cycle, existing SRAM array sense amps can be
utilized. Bit-serial computing over bit-lines obviates the need
for communication across bit-lines for carry propagation,
keeping the logic compact. Other approaches towards in-
memory computing [3] utilize analog computing requiring
expensive ADCs and restricted to limited precision.

At this stage, we had developed a microcode library of
In-SRAM arithmetic operations along with a comprehen-
sive circuit design for array peripherals and a transposed
memory unit. Concurrently, we delved into the geometry
of modern caches, gaining deep insights into their layout,
array peripherals, sense-amp multiplexing, and data array
organization. Suffice to say, the layout of the last level cache
in modern CPUs significantly deviates from textbook set-
associative caches or even CACTI. With our breakthrough,
we could now potentially repurpose a 35 MB LLC in the
server-class Intel Xeon E5-2697 v3 to support 1,146,880
bit-serial ALU slots. This computational capability greatly
exceeded the aggregate SIMD width in Xeon (448 32-bit
slots), or even the then-latest GPU (Nvidia Titan Xp with
3840 32-bit slots).

So, what about the killer application? It was 2017 when
DNNs were gaining significant popularity, and during a
discussion at the ISCA PC meeting between two co-authors
of our paper, the question arose: Could our technology
accelerate DNNs? This became a fun challenge for our
team to undertake. Subsequently, the ISCA 2017 tutorial
by Joel Emer and Vivienne Sze was a wonderful avenue
to understand the key computational primitives of CNNs.

Upon deeper introspection, it became apparent that our
technology was an excellent fit for DNNs. Why so? Al-
though our architecture exhibited high latency for individual
operations, it could execute millions of MACs in parallel,
which aligns well with the needs of unrolled CNNs, as they
require the parallel execution of millions of MACs. What
ensued was months of intensive research to learn CNNs,
and develop a massively data-parallel computation mapping
strategy onto the cache architecture.



What we learned and what followed. In our paper,
we demonstrated that Neural Cache can be employed to
accelerate memory and compute-intensive programs such as
neural networks. Performing arithmetic operations in-place
in caches is a game changer, as it can transform CPU caches
into accelerators for data and graph analytics. Our subse-
quent work, Duality Cache [4], designed support for floating
point operations, developed a SIMT microarchitecture, and
built a CUDA compiler for programmability. This allowed
us to run arbitrary data-parallel programs entirely on cache
while providing an order-of-magnitude efficiency gain.

Neural Cache’s significant latency and energy improve-
ments on DNNs inspired many follow-up research works
citing our work, all of which pursued relevant in-memory
approaches to design DNN acceleration solutions. However,
Neural Cache is only one instance of the compute cache ar-
chitecture paradigm. Our recent work [5] demonstrated that
caches can be repurposed to accelerate automata processing,
achieving speeds 15 times faster than Micron’s DRAM-
based Automata Processor, and 320 times faster than a GPU.
Our follow-up work, GenCache [6], displayed similarly
powerful results for Genomics. In addition to caches, our
group demonstrated that In-SRAM computing is an exciting
technology applicable to block RAMs in FPGA [7] and as
an independent ASIC accelerator for LSTMs [8].

We pioneered In-SRAM computing in the research com-
munity six years ago. The topic continues to attract sig-
nificant attention in the circuits/architecture community and
has expanded to include other emerging on-chip memories.
A distinctive feature of Neural Cache is its use of bit-
serial computing. Numerous subsequent works continue
to demonstrate that bit-serial computing can enhance in-
memory architectures (e.g., [9], [10], [11], [12]).

Looking forward. Given that caches are present in
nearly all modern processors, we envision Neural Cache as
a revolutionary technology that can significantly augment
commodity processors with large data-parallel accelerators
at virtually no extra cost. This advancement enables CPU
vendors (such as Intel, AMD, IBM, etc.) to maintain their
delivery of high-performance general-purpose processing
while supplementing it with a co-processor-like capability
designed to exploit massive data parallelism. This type of
processor design is particularly appealing for challenging-to-
accelerate applications that frequently oscillate between se-
quential and data-parallel computation. Moreover, the recent
trend towards increasing cache sizes renders the proposed
technology even more compelling [13]. For instance, recent
processors boast a total cache size of several 100 MBs! [14].
To conclude, nearly three-fourths of a server class processor
die area today is devoted to caches. Even accelerators use
large caches. Why would one not want to turn them into
compute units?
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