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Our paper, titled Transient-Fault Recovery for Chip Multi-
processors [2], tackled the problem of increased susceptibility
of scaled technology nodes to transient faults. (Multicores
is the current term for chip multiprocessors.) The paper
proposed Chip-Level Redundantly Threaded Multiprocessor
with Recovery (CRTR) which runs two copies of each
thread, one ahead of the other, the leading and trailing
copies. In prior work on handling transient faults in sin-
gle, hardware-multithreaded cores, the two copies run in
different hardware contexts on the same simultaneously-
multithreaded (SMT) core (e.g., Active-stream/Redundant-
stream Simultaneous Multithreading (AR-SMT) [9], Simul-
taneous and Redundant Threading (SRT) [8], and Simul-
taneous and Redundant Threading with Recovery (SRTR)
[10]). While the leading thread is the original thread which
includes speculative instructions, the trailing thread uses
the leading thread’s branch-prediction outcomes to execute
only the correctly-predicted instructions which are around
45-60% of all speculative instructions. Further, the trailing
thread overlaps its execution with the leading thread’s cache
misses incurring much lower slowdowns than that of naively
redundant execution.

In a multicore, the two copies run on different cores, as
proposed in Chip-Level Redundantly Threaded Multiproces-
sors (CRT) [5]. Unlike detection schemes which compare
only the store addresses and values of the two copies [5],
[8], recovery schemes compare the copies’ register values
before instruction commit because committing an erroneous
register value – a case of silent data corruption – would make
recovery impossible [2], [10]. However, the register values
impose high inter-core bandwidth pressure in multicores,
even if the copies run on adjacent cores.

To address this issue, CRTR reduces the bandwidth de-
mand apart from pipelining the communication path for
higher bandwidth supply. Because faults propagate through
(true) dependencies, our previous work [10] proposed depen-
dence based checking elision (DBCE) so that only the output
of the last instruction in a dependence chain is checked. How-
ever, instructions that mask operand bits may mask faults so
that a faulty register value may be committed if the masking
instruction is not at the end of its dependence chain. On the

other hand, ending the chain at such masking instructions
may limit the chain length and bandwidth savings. Instead,
we made the key observation that if an instruction’s source
operand dies at the instruction then any masked fault in the
operand does not corrupt later computation. Accordingly,
we proposed death-and dependence-based checking elision
(DDBCE), which chains a masking instruction only if the
source operand of the instruction dies at the instruction.

CRTR’s results show that CRT incurs around 15% single-
thread slowdown compared to a non-fault-tolerant multicore,
and CRTR does not worsen this degradation even for 30-
cycle adjacent-core communication latency. Further, CRT
requires 5.2 bytes per cycle adjacent-core communication
bandwidth, and CRTR with DDBCE increases the demand
only to average 7.1 bytes per cycle.

CRTR has had significant impact on hardware fault-
tolerance research, accruing more than 480 citations till date.
CRTR has spurred considerable follow-on work, including
our own [3], [6].

Continued technology scaling means ever-increasing sus-
ceptibility not only to transient faults but also to aging-related
hard faults. However, transient faults affecting compute logic
in real-world multicores have not been reported widely,
though memories – DRAM and multi-megabyte on-chip
SRAM caches – continue to need to be protected by ECC
against many types of faults, including transient ones. On
the other hand, data center operators have reported failures
traced to aging-related hard faults as the root cause [1], [4].

Though proposed for soft errors, CRTR’s ideas can be ap-
plied to hard faults as well. For instance, in distributed, mul-
tithreaded or multi-process applications running on shared-
or distributed-memory systems, merely detecting faults (for
instance, via CRT) is not enough. Even though stores are
checked in CRT to prevent memory from being corrupted
by a fault, corrupted register data would render the corre-
sponding thread or process irrecoverable. Further, the faulty
thread’s memory state though not corrupted may be incon-
sistent globally across the other threads or processes because
the faulty thread may have updated memory with correct
but incomplete computation that leaves memory globally-
inconsistent.



Of course, transaction-based software (e.g., SQL
databases) can recover from such problems by reverting to
a previous globally-consistent state. However, such software
is non-trivial and expensive to develop and maintain,
and is relied upon only for the most stringent contexts
(e.g., financial and medical accounts). In other contexts
(e.g., widely-used noSQL databases which do not provide
transactional behavior), faults can create serious system-wide
inconsistencies. Such errors can be prevented by CRTR
without software complexity. For hard faults, a mismatch in
the two copies in CRTR indicates the presence of a fault
but does not identify the faulty core. To that end, both cores
are suspended upon a fault-detection exception and one of
the copies is migrated to a third core via standard thread
migration. Then, both copies resume execution for as many
instructions as the instruction window of the core (e.g.,
500-1000). Because the error was caught in the original
run before being committed, the error was triggered within
the instruction window. Thus, the second execution with
the migration will lead to a mismatch within the window,
if the non-migrated core was faulty. Otherwise, the core
from which the migration occurred is faulty. The OS has
to disable the faulty core. In the unlikely event of multiple
core failures, the OS can handle the ensuing fault-detection
exceptions one at a time. The application threads can
continue to execute on the remaining non-faulty cores.

For aging-related hard faults, enabling CRTR’s redundancy
all the time may be undesirable for performance reasons,
especially when the system has not aged. As such, as a trade-
off between performance and reliability depending on the age
of the system, CRTR can be enabled for some contiguous
stretch of time periodically at a rate determined by the OS
eventually resorting to continuous checking for some of the
cores depending on their ages.

Finally, transient and hard faults are a serious issue in the
emerging domain of self-driving cars where fault recovery
may be crucial for continued operation. The above migration-
based CRTR scheme can ensure uninterrupted operation.
Software-based self-test approaches that directly target faults
can further improve reliability when run under CRTR [7].
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