
Retrospective: Understanding Sources of
Inefficiency in General-purpose Chips

Rehan Hameed Wajahat Qadeer Omid Azizi Alex Solomatnikov Benjamin C. Lee Christos Kozyrakis
Mark Horowitz

I. INTRODUCTION

This paper, published at ISCA 2010, explored why ASIC
energy and area efficiency was so much higher than a general
purpose CPU and what could be done to close that gap. It was
motivated by the fact that compute had started moving from
desktops and servers to power constrained devices such as
smartphones, tablets, intelligent cameras and other embedded
devices. At the same time we had hit the end of Denard scaling
so computer architects could no longer rely on just technology
node scaling to get the required energy reduction. Instead they
had to find architectural ways to create fundamentally more
efficient designs with less waste.

The paper showed that data movement overhead is the
biggest culprit behind the inefficiency of programmable com-
pute systems. Application-specific HW blocks don’t do “bet-
ter compute” – rather they are much less wasteful in data
movement compared to programmable processors. Their data-
paths incorporate dedicated storage elements close to compute
blocks eliminating expensive read/writes to memories and
register files. To bring similar efficiency to programmable
processors one needs to add specialized datapaths, which the
paper called ”magic instructions”, which combined compute
and storage in a manner matching the data flow of the specific
algorithms being accelerated. The work was an early example
showcasing the advantage of adding complex dataflow opti-
mized compute+memory units to scalar / vector processors.

The paper used H.264 encode as the target application for
this study. This application was chosen as it has been shown to
benefit tremendously from specialized HW - a dedicated H.264
ASIC outperforms a high-end CPU at a fraction of silicon
area while consuming 500x times lower energy! The paper
carried out a detailed analysis of the energy consumption in
various components of a computing systems while executing
this application, and analyzed designs with various degrees
of specialization including a generic CMP based on RISC
cores, cores with standard extension such as SIMD and VLIW,
cores with custom instructions of various complexity as well
as a fully custom ASIC design. By comparing the energy
consumption across these designs, it determines where energy
is wasted in an instruction set based design and how various
specializations help eliminate or reduce that waste.

In a generic CPU, arithmetic operations account for less
than 1% of total energy. Most of the energy is ‘wasted’ in
energy-expensive data accesses from memories and register
files, with the control overhead of instruction sequencing

being the second major component of energy consumption.
Adding vector datapath extensions similar to GPUs and In-
tel’s SSE instructions helps amortize the instruction execution
overhead over multiple operations. This helps improve CMP
performance by 14× and energy by 10×. However compute
still accounts for less than 10% of total energy with data
accesses, and instruction execution overhead accounting for
the remaining 90%. Thus the vector CMP remains 50x worse
compared to the ASIC.

To bridge the remaining gap we must satisfy two require-
ments:

• Each compute instruction executes hundreds of operations
to effectively amortize the high cost of instruction fetch
and sequencing

• Accesses to register files and memories are significantly
reduced by retaining data inside the compute units

To meet these goals requires using custom storage structures
with algorithm-specific communication links to directly feed
large amounts of data to functional units without explicit
register accesses. The connectivity of these storage elements
to functional units is matched to the dataflow of the tar-
get algorithms. These instructions with merged compute and
storage elements enable a very high degree of parallelism,
increase data-reuse in the datapath and reduce communication
bandwidth and power at register file as well as memory level.
Adding these complex instruction to an existing programmable
engine yields a programmable solution which can achieve high
efficiency. The final CMP design leveraging such instructions
was within 3x of the energy consumption of the dedicated
ASIC.

II. KEY INSIGHTS AND RELEVANCE IN 2023
Over the last decade the key insights presented in the paper,

the need to create “magic” instructions with optimized stor-
age/compute and the advantages of embedding these optimized
dataflows into a processor, have been validated by several
commercial and academic designs. Today, these insights are
specially significant because of the growing importance of AI
workloads. AI compute requirements far exceed traditional
algorithms requiring tens to hundreds of TeraOps, making
the traditional processor design approaches infeasible. At the
same time the AI algorithms are rapidly evolving with new
algorithms coming up every month thus requiring a high
degree of programmability. The most successful designs in
this space have followed our insights of adding specialized
hardware into a powerful programmable engine.

1



We continued developing the ideas presented in the paper
further, creating the Convolution Engine (CE) [5], specialized
for the convolution-like data-flow that is common in image and
video processing, computer vision and convolutional neural
networks. The CE instruction set achieves high energy ef-
ficiency in these domains by capturing data reuse patterns,
eliminating data transfer overheads, and enabling a large
number of operations per memory access. This approach was
later implemented commercially in specialized AI processor
chips developed at Kinara [1], which have been deployed
in large volumes to enable high performance, real-time AI
inference in power-and-cost-constrained edge devices [7].

Most successful AI accelerators have followed similar ap-
proaches of embedding specialized magic instruction engines
into a base programmable engine. One of the clearest examples
is NVidia GPUs which added tensor cores [3] to its vector SMs
enabling the accceleration of various AI algorithms including
the widely used cuDNN library. Similarly TPU [6] uses a small
set of massively parallel instructions which leverage a large
systolic array with storage elements directly embedded in it.
The TPU works along side a traditional CPU where the CPU
uses its instruction set to accelerate a range of matrix math /
linear algebra operations.

Coarse-grained re-configurable array (CGRA) architectures
adopt an alternate approach to enable flexibility. CGRAs
consist of an array of programming elements (PEs) where each
PE is connected to neighboring PEs. The connectivity between
PEs is configurable allowing multiple algorithmic and data
flows to be mapped [4]. However, the overhead of the routing
between the PEs can still limit the area and energy efficiencies
if each PE is very simple; therefore, CGRAs also employ
complex PEs tailored to specific applications to prevent data
routing from lowering efficiency. [2]

III. WHAT WAS MISSED IN THE PAPER

This paper focused on executing a specific function, and
as expected, creating a more flexible computing solution, the
CMP with magic instructions, results in worse efficiency than
the ASIC. In our case the penalty was around 3x confirming
our intuition that flexibility in the HW inevitably results in
lower efficiency. While that is true at the level of an individual
compute kernel, processor flexibility can lead to greater system
level efficiency. Practical implementations of this approach
in Kinara AI chips have shown that the added flexibility at
processor level gives the system level compiler more free-
dom in managing data flow and data reuse across memory
hierarchies for each application and minimize data movement
which would otherwise dominate the energy consumption.
Thus, counter-intuitively the flexible instruction set approach
leads to greater overall system efficiency.

The extent of communication between accelerated functions
and rest of the application is another factor not discussed in the
paper. Workloads such as video encode work on large chunks
of data so a standalone accelerator doesn’t require frequent
communication with other parts of the system. However, ap-
plications like cryptography and some AI inference workloads

require close interaction with a complicated software stack
(OS, network, storage and other applications etc). For such
workloads flexibility offered by magic instructions in general
purpose processors is even more attractive.

Of course the greater flexibility that this approach provides
comes at a cost. The paper poses the design problem as a
trade-off between flexibility and efficiency. However it does
not directly address the third axis of this tradeoff which is the
ease of developing code. The instruction set based approach
presented in the paper makes it possible for a programmer
to merge specialized compute with regular code unlike using
standalone fixed function units which typically require code
restructuring and partitioning of the algorithm to effectively
use them.

However, using these instructions, optimizing loops and
variables is nevertheless substantially more complex for a
compiler than using standard vector / SIMD instructions.
Compilers are good at lowering code, however using these
complex instruction usually requires lifting code, which is a
harder compilation task. Today these specialized instructions
are often manually used by programmers in their code which
limits productivity. NVidia and Google both have extensive
compiler efforts, and have a large number of programmers
developing optimized libraries using these special instructions
which are then used by the end customers. Enabling the
compilers and code generation frameworks to automatically
make use of these instructions is the current research frontier.

REFERENCES

[1] Kinara.ai. [Online]. Available: https://kinara.ai/products/
[2] J. Melchert, K. Feng, C. Donovick, R. Daly, R. Sharma, C. Barrett,

M. A. Horowitz, P. Hanrahan, and P. Raina, “Apex: A framework for
automated processing element design space exploration using frequent
subgraph analysis,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, ser. ASPLOS 2023. New York, NY,
USA: Association for Computing Machinery, 2023, p. 33–45. [Online].
Available: https://doi.org/10.1145/3582016.3582070

[3] NVIDIA. Nvidia tesla v100 gpu architecture. [Online].
Available: http://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf

[4] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable
architecture for parallel patterns,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), 2017, pp.
389–402.

[5] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and
M. A. Horowitz, “Convolution engine: balancing efficiency & flexibility
in specialized computing,” in ISCA, 2013, pp. 24–35.

[6] K. Sato and C. Young. An in-depth look at
google’s first tensor processing unit (tpu). [Online]. Avail-
able: https://cloud.google.com/blog/products/ai-machine-learning/an-in-
depth-look-at-googles-first-tensor-processing-unit-tpu

[7] S. Ward-Foxton. Ai startup deep vision raises funds, preps next
chip. [Online]. Available: https://www.eetimes.com/ai-startup-deep-
vision-raises-funds-preps-next-chip

2


