
RETROSPECTIVE: An Analytical Model for a
GPU Architecture with Memory-Level and

Thread-Level Parallelism Awareness
Sunpyo Hong

Technology Pathfinding and Innovation
Intel Corporation

sunpyo.hong@intel.com

Hyesoon Kim
School of Computer Science

Georgia Institute of Technology
hyesoon.kim@cc.gatech.edu

I. MOTIVATION

It is an exceptional privilege to have the opportunity to
write a retrospective for ISCA, reflecting on the significance of
our publication in ISCA 2009, which marked the first major
contribution from HpArch Lab. At that time, Sunpyo Hong
was a junior Ph.D. student and Hyesoon Kim was a new
assistant professor at Georgia Tech.

The year 2007 witnessed the emergence of GPU/CUDA
technology, which garnered significant attention within the
computer architecture community. Notably, the CUDA and
GPU architecture lecture series by Wen-mei Hwu and David
Kirk from UIUC ECE 498AL served as a primary educational
resource on GPU architecture. Subsequently, several universi-
ties began offering specialized courses on GPUs to fuel GPU
architecture research.

Our publication was a natural extension (and in some
sense a by-product) of our collaboration on the Qilin pa-
per [4], which was started in 2007 and published later than
this ISCA paper. Our joint efforts with CK Luk focused
on developing auto-work distribution techniques for GPUs
and CPUs, necessitating a comprehensive understanding of
CUDA’s performance characteristics on GPUs. During this
time, Ryoo et al.’s [5] inspired us to write a deeper GPU
architecture performance analysis paper.

The primary motivation behind our paper was to educate
the performance advantages and behaviors of GPUs. Specif-
ically, we aimed to debunk the common wisdom during that
time of optimizing for occupancy yielded optimal results as
shown in Figures 3 and 4 of the ISCA paper, illustrating the
occupancy-performance trade-off. We sought to shed light on
how GPUs truly performed and provided visualization of GPU
performance behavior.

The challenge we faced was how to construct a high-level
GPU performance model that balanced architecture details and
simplifications to be useful for programmers and architecture
researchers. Looking back after 14 years, the high-level model-
ing of GPU architecture was relatively less complex compared
to contemporary GPUs. Unlike modern designs, early GPU
architectures lacked global memory caches. We realized that

the major performance impact factor was memory cycles and
their potential to overlap across multiple GPU warps. By
categorizing scenarios of memory and computation overlap
and predicting high-level performance, we could identify the
key contributors to GPU performance and model them ac-
cordingly. And knowing what contributes to the performance
and modeling them was the paper’s contribution. Because
the GPU architectures had so drastically different architecture
compared to CPUs and since this work had fresh contents such
as the calculation of memory warps overlapping along with
the computation warps, we believe that this is why the work
appealed to academic researchers thereafter. Thanks to the
reviewers of this work who valued this new research attempt
and later with the support of John Nickolls at NVidia, we are
honored to have this opportunity to write a retrospective.

II. WHAT THE PAPER SHOWED

The paper’s significance lies in its ability to establish a
connection between CUDA programs and their performance
implications. Programmers must consider the performance im-
pact when writing code. Techniques such as reducing program
lines, minimizing memory footprints/array sizes, and increas-
ing parallelism through the use of parallel-for constructs are
commonly employed for program optimizations. These tech-
niques are relatively easy to visualize. However, optimizing for
GPUs introduces the need to consider hardware utilization,
which was a novel concept at the time. In retrospect, the
distinction between optimization for latency and parallelism
versus optimization for throughput drove these changes. The
aim of this ISCA paper was to bridge the gap between
optimization differences and program-level considerations.

To achieve this, we introduced two metrics: memory warp
parallelism (MWP), representing the number of concurrent
memory requests that can be executed, and computation warp
parallelism (CWP), representing the amount of computation
that can be performed by other warps while one warp awaits
memory values. By utilizing both MWP and CWP metrics,
we classified the three cases: MWP > CWP, CWP > MWP,
and insufficient parallelism to estimate the overall execution
time of a program. Later the roofline model [7] provides clear

1



explanations of compute-limited (MWP>CWP) and memory-
limited (CWP>MWP) cases but not the third case, which
is not-enough parallelism. While the insufficient parallelism
appeared to be an exceptional case during the development of
the performance model, it turned out to be a critical component
for programmers to consider. The analytical model converts
the compute execution time from a thread to the unit of warp,
which is the execution unit, and takes into account of the
available number of GPU cores with respect to CUDA number
of threads and blocks. Because the model connects the CUDA
software with the GPU hardware parameters, the analytical
model might represent high complexity to use, therefore,
further contents are discussed in the Hong’s Ph.D. dissertation.

An analytical model proves useful in predicting performance
using a back-of-envelope computation, benefiting compilers
and programmers. With GPUs providing numerous knobs for
code optimization, one of the follow-ups to this paper aimed
to integrate the analytical model with compilers, using it as a
guide for performance optimizations. The work by [1] serves
as an example. However, at the time this ISCA paper was
published, the GPU compiler framework was not fully open,
and it took longer to witness the integration of the analytical
model and compiler.

Another application of the analytical model is providing
guidance to programmers on code optimization. Furthermore,
since the analytical model inherently focuses on essential
performance-contributing factors, it provides researchers and
programmers with insights into GPU performance. However, it
is worth noting that seasoned programmers often employ the
latest CUDA programming features, such as warp shuffling,
which the analytical model may lack. Additionally, the paper
”debunking the 100x GPU...” [3] demonstrates cases where
CPUs outperform GPUs, providing concrete examples.

Due to the novelty of GPU architectures and the growing
popularity of GPGPU in the computer community, this paper
paved the way for numerous other GPU performance modeling
studies. Subsequently, we published a paper on GPU power
modeling in the follow-up ISCA [2], where we improved the
GPU performance models to include caches and introduced
additional metrics for programmers [6].

In today’s era, GPUs are primarily employed for machine
learning (ML) applications. Given the current importance
of machine learning and the increased availability of open
frameworks for GPU-based programs, several performance
prediction studies have emerged that specialize in ML appli-
cations.

In conclusion, this ISCA paper made significant contribu-
tions by establishing a connection between CUDA programs
and their performance implications. It introduced metrics, such
as memory warp parallelism and computation warp paral-
lelism, along with a categorization of memory overlapping
scenarios and computation cycles, to estimate program exe-
cution time. The paper’s analytical model provided valuable
insights into the GPU performance and guided program-
mers and researchers in understanding the key performance
components of GPU architecture and optimizing their code.

While the programming landscape may have shifted with
the emergence of machine learning applications and evolving
programming paradigms, the importance of static performance
prediction remains paramount for code optimization. It is
worth noting that as GPUs continue to evolve and new ar-
chitectural advancements are introduced, the analytical models
and techniques presented in this paper may need to be adapted
and expanded. Ongoing research and development in GPU
performance modeling continue to refine and enhance our
understanding of these architectures.

EPILOGUE

The publication of this ISCA paper provided us with the
confidence and inspiration to pursue GPUs as our primary
research focus. Even after 14 years since its publication, both
authors have remained dedicated to advancing the field of
GPUs. Sunpyo Hong, one of the authors, has continued to
contribute to the field by focusing on Intel GPUs. Hyesoon
Kim has been actively involved in the development of an open-
source GPU.

As we reflect on the journey that began with this publication,
we are grateful for the opportunities it has brought us and for
the chance to be part of the ongoing advancements in GPU
architecture modeling. We look forward to the future, where
GPUs continue to play a pivotal role in enabling innovative
and high-performance computing solutions.

REFERENCES

[1] P. Barua, J. Shirako, and V. Sarkar, “Cost-driven thread coarsening for gpu
kernels,” in Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’18. New York,
NY, USA: Association for Computing Machinery, 2018.

[2] S. Hong and H. Kim, “An integrated gpu power and performance model,”
in Proceedings of the 37th Annual International Symposium on Computer
Architecture, ser. ISCA ’10, New York, NY, USA, 2010, p. 280–289.

[3] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, “Debunking the 100x gpu vs. cpu myth: An evaluation
of throughput computing on cpu and gpu,” SIGARCH Comput. Archit.
News, vol. 38, no. 3, p. 451–460, jun 2010.

[4] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on hetero-
geneous multiprocessors with adaptive mapping,” in Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO 42, New York, NY, USA, 2009, p. 45–55.

[5] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and
W.-m. W. Hwu, “Optimization principles and application performance
evaluation of a multithreaded gpu using cuda,” in Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’08, New York, NY, USA, 2008, p. 73–82.

[6] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A performance analysis
framework for identifying potential benefits in gpgpu applications,”
SIGPLAN Not., vol. 47, no. 8, p. 11–22, feb 2012.

[7] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, pp. 65–76, 04 2009.

2


