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Everyone knows the story of AlexNet blowing open the 2012
ImageNet Large Scale Visual Recognition Challenge [5]. After
AlexNet, Google hired its authors and added them to the Google
Brain team, which was already working in the areas of speech and
image recognition. A key signal soon afterward was that matrix
multiplication exceeded 1% of CPU fleet cycles in Google Wide
Profiling. Another signal was the analysis by Jeff Dean (a Google
Fellow, now the Chief Scientist) that processing a few minutes of
speech or video by 100M users would require doubling or tripling
the size of the CPU fleet. Other options were clearly required.

Dean’s observation made its way to Andy Phelps, who
developed the initial TPU design, including the key decision to be
systolic array-based. To lead the project, Dean recruited Norm
Jouppi—who was leery about AI given past hyperbole—by noting
“each time we try deep learning on something new, it works!”

Our vice president of engineering, Urs Hölzle, said something
along these lines at a technical review of machine learning (ML):

I’ve seen this kind of thing happen before. I don’t know
whether it’ll be in two days or two years, but someone from
the Google Brain team is going to show up and tell me that if
we had 10x the compute, it will be worth [a lot].
Before Christmas of 2013, the TPU design ran as a two-track

program, with one architecture targeting two platforms, FPGA and
ASIC. The side length of the systolic array was parameterized in
both our Verilog and our C++ codes. The FPGA design aimed for a
side length of 64, as 4096 (642) multiply-accumulate cells slightly
exceeding the number of DSP multiplier blocks in our target
device, while the ASIC design aimed for a side length of 256, and
became the TPU (later and fortunately, rebranded TPU v1).

In January of 2014, one colleague on the Speech team ported
their MLP-based acoustic model to a GPU and used a high fraction
of that GPU’s ~2000 ALUs. When combined with the GPU’s
higher clock rate, it meant that the peak of the FPGA design had
already been eclipsed by the GPU. We thus pivoted to an
ASIC-first program. The FPGA still landed in the datacenter, six
months before the ASIC was available; it served as a “pipe
cleaner” for all of the Google deployment processes to support a
new accelerator in production.

The TPU paper showed that it actually exceeded the original
goals of an order of magnitude improvement, with 80x the
performance/Watt of contemporary CPUs and 30x of contemporary
GPUs [1]. We reflect now, ten years after the TPU project started:
● Early characterizations of TPUs incorrectly interpreted the

term “ASIC” to mean a fixed-function device. There is a vast

design space that includes general-purpose computers and
highly optimized special functional units. The tricky part is to
build a chip with enough flexibility—one that is program-
mable and flexible enough to serve the future market, but with
enough specialization to confer an advantage. We considered
but rejected building an AlexNet-specific machine, which
would not have had the same impact.

● Because our forecasts for deep learning were imperfect, we
put a number of “insurance policy” features into the TPU
design—things that we were not sure we would use, but
which might save us later, after the chip had taped out .1
Sometimes we were just lucky—the element-wise multipli-
cation and addition features were a late feature request by the
Speech team, to support LSTMs. Because the element-wise
operations let us mask and combine activations, we could
support kernel striding for Inception and software transposes
for AlphaGo—two critical features which our early customers
had sworn in the definition phase that they would never need.

● The 8-bit quantized arithmetic in TPU v1 was both a basis for
the 92 T operations/second peak and a huge programmer
headache. In retrospect, we wish we had included numerical
mathematicians in the project from the beginning, and that we
had written and published a clean numerical basis for the
calculations we performed. These issues persist today—loss
scaling is a relative of the scale-factor management required
by quantized arithmetic—around the standardization efforts
for 8-bit floating-point formats and the quest for even smaller
representations, whether fixed or floating point.

● We sometimes tout the TPU’s 15-month time from project
kickoff to datacenter deployment, much shorter than is
standard for production chips. Indeed, subsequent TPUs,
which Google relies upon for production, have multiyear
design cycles. The fast time-to-market was enabled by a
singular schedule focus, not just in architecture—where the
700 MHz clock rate enabled easy timing closure and the aging
28nm process was fully debugged—but also in heroic work
by our datacenter deployment teams.

● Programmability and flexibility remain vexing for
accelerators today. TPU v1 was a mixture of hard- and
easy-to-program facets. On the easy side, each chip had a
single thread of control, where the programmer had complete

1 Not using an insurance policy is not a failure—rather, a lack of
unused insurance policies means that you were underinsured.
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control over all resources and could reason analytically about
how much time an operation would take. On the hard side, the
quantized arithmetic and the schedule-rushed jumble of ISA
features (at least three different integer representations) made
seemingly simple tasks much harder (“why is it hard to do
long multiplication?”). The tiny, CISC instruction set was a
double-edged sword, preventing us from reusing
general-purpose compilers but also entirely removing the
need for many compiler optimizations.

● We identified memory bandwidth as a fundamental limitation
in TPU v1, which often operated under the memory-bound
part of the roofline [1]. Bandwidth remains a critical issue
today, even with HBM3 and superpod-scale interconnects.

● We had low expectations for the impact of ML; maybe it
could identify a few objects in images and help translation?
Today's expectations for ML span a range from apocalypse to
utopia; we hope very much to be closer to the latter.
Google’s announcement in May 2016—that TPU v1 had 10x

the performance/Watt of any FPGA and GPU for ML inference
and was used by AlphaGo to beat Lee Sedol—was like an
earthquake that shook Silicon Valley.

Intel went on a buying spree of companies with a domain
specific architecture (DSA) for ML: Nervana, Movidius,
MobilEye, and Habana. Hyperscalers like Alibaba and Amazon
and end users like Tesla started their own inference DSA chips.
The venture community also reacted, investing $3B per year from
2016 to 2020 in more than 100 ML DSA startups. Some startups
bet on novel ideas that didn’t succeed for general purpose
computing such as analog computation, asynchronous logic, and
wafer scale hardware. (It’s unclear today if the startups made the
same investment in their software stacks for ML as they did in
their hardware.) Inside Google, we’ve announced four successors
to TPU v1 so far. Drawing an historical analogy to Helen of
Troy—“the face that launched a thousand ships”—we say
tongue-in-cheek that TPU v1 “launched a thousand chips.”

The TPU v1 paper [1] itself has had research impact as well.
At the time of this writing, it has 4365 citations, which despite
being published recently is the second most cited paper over the 50
years of ISCA and the most cited over the last 5 years [10]. One
unusual feature is its 76 authors. We tried to include everyone who
participated in any phase of the hardware or software design or
deployment. One regret, corrected in this retrospective, is that we
still missed some of our collaborators, including Boone Severson.
Later TPU papers followed ACM policy that authors must
participate in the writing of the paper, moving those who didn’t to
the acknowledgements.

One consequence of publishing the TPU v1 paper is that it
made us realize that there were no well-established benchmarks for
ML. Thus, some of us helped start an effort to create an ML
benchmark, now known as MLPerf [8]. MLPerf is now the ML
equivalent of the SPEC benchmark for CPUs [6], and we quote
MLPerf results in all the subsequent TPU papers [2,3,4,7].

While this paper on TPU v1 got rave reviews at ISCA 2017,
ASPLOS rejected a subsequent submission on TPU v2 that
focused on training, and ISCA rejected a revision that added TPU
v3. One opined there were no new ideas and another that it
couldn’t be research since it was already built! We published
papers on TPU v2/v3 elsewhere [2,7], so you can decide if you
agree or not with the program committees of 2019. (We don’t!)

After commenting at the next ISCA business meeting that
current program committees might not appreciate papers on real

architectures from industry as they did in the past, Dave Patterson
was charged with developing an ISCA industry track [9]. It started
in 2021 and has become a popular feature at ISCA, with the
industry session typically opening or closing the conference. Given
program committees that valued innovative hardware built by
industry, later TPU papers were well received [3,4].

We’re delighted that Google management lets us write
retrospective papers about novel hardware after deployment, and
we encourage other architects in industry to follow suit. The lure of
prestigious publication helps get busy people to take the time to do
a thorough postmortem of design decisions and comparison to
external alternatives, which can be rare in industry.

A reason such a post-deployment analysis is rare is that the
architects of the last computer are already working hard on the
next one. The subsequent publication of such an analysis is even
rarer because unlike academia, no one gets promoted for
publishing; authors have to be self-motivated. Many architects at
Google have PhDs, so they’ve been indoctrinated early to value
papers even if their managers don’t reward publication.

Fred Brooks’ advice—“Plan to throw one away. You will
anyway”—was a guiding principle during the design of TPU v1. It
allowed us to choose good-enough solutions while keeping to our
schedule. We are proud that today, tens of thousands of these fully
amortized, low-power inference DSAs are still running ML jobs in
Google data centers eight years after their initial deployment.
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