
RETROSPECTIVE: GraFboost: using accelerated
flash storage for external graph analytics

Sang-Woo Jun∗, Andy Wright†, Sizhuo Zhang†, Shuotao Xu†, and Arvind†
∗ Computer Science, University of California, Irvine.

swjun@ics.uci.edu
† Electrical Engineering and Computer Science, Massachusetts Institute of Technology.

acwright@mit.edu, {szzhang,shuotao,arvind}@csail.mit.edu

The primary goal of GraFBoost, as well as many of our
subsequent efforts, is to reduce the cost of large-scale data
processing. We focus on hardware acceleration of out-of-core
algorithms, replacing costly and power-hungry DRAM with
cheap and efficient solid-state storage such as NAND Flash,
without loss of performance. For GraFBoost, we targeted
graph analytics because it is an egregious example of sparse
and irregular data accesses, challenging ourselves to overcome
one of the worst applications for out-of-core performance.

I. GRAFBOOST OVERVIEW

GraFBoost is a scalable out-of-core graph analytics platform
which addresses the issue of randomly accessing algorithmic
state of vertices in storage, during graph algorithm execution.
If the capacity of data stored at each vertex is small relative to
the size of a storage page, random accesses into the array of
vertex data incurs heavy I/O amplification. For example, ver-
tices during a shortest path algorithm only need to remember
the current shortest distance to itself and the previous vertex in
the path. This only requires, say, 8 bytes, which is minuscule
compared to a 4 KB page.

Underneath, GraFBoost employs two noteworthy innova-
tions to efficiently address this issue: The (1) Sort-Reduce
algorithm, and (2) near-storage FPGA acceleration.

The Sort-Reduce algorithm efficiently sequentializes ran-
dom updates into an array in secondary storage by first sorting
a large number of requests before applying them (“Sort”).
It reduces sorting overhead by merging pairs of consecutive
update requests to the same index, whenever they are found
during sorting (“Reduce”). This requires that the updates be
expressible as an associative binary function (e.g., add).

GraFBoost is implemented as a near-storage FPGA accel-
erator, to minimize the performance impact of the additional
sort-reduce operation. Near-storage accelerators can use the
high internal bandwidth of multiple storage devices without
being limited by the host-side PCIe bandwidth.

Both approaches showed great benefits individually as well
as together. The sort-reduce approach of interleaving reduction
with sorting was able to typically reduce the amount of storage
access by over 90%, resulting in even a purely software im-
plementation of GraFBoost to outperform existing out-of-core
software on large graphs, i.e., graphs exceeding the available
memory capacity. A prototype accelerator on a Xilinx VC707

FPGA and 1 TB of NAND-flash storage was able to further
improve performance by almost 2×. The prototype sort-reduce
accelerator was able to process 4 GB/s per processing element,
which benefits from the near-storage configuration because
it exceeds the PCIe bandwidth of the prototype. It also
almost eliminates the host processor and memory resource
requirements, resulting in superior performance at a quarter
of cost.

II. INSIGHTS LEARNED SINCE

Since the publication of GraFBoost, we have continued to
explore accelerated out-of-core algorithms as a solution to
scalability issues for a variety of applications.

One important discovery is that sort-reduce is a versatile
solution to the out-of-core random access issue for many
applications beyond graphs. The only restriction sort-reduce
adds to generic array updates is that the update function has
to be associative. This restriction is easily satisfied for many
applications of interest, including sparse matrix multiplication
for graph neural networks, constructing De Bruijn graphs from
genome reads [79], hash table construction [81], and database
joins [83].

Another interesting discovery is that, especially with hard-
ware acceleration, the overhead of sort-reduce is low enough
to improve the performance of even in-memory algorithms.
Despite the name, DRAM can actually suffer an order of
magnitude performance degradation with fine-grained random
accesses compared to sequential. There are multiple reasons
for this, including the overhead of opening a new bank and
loading a new row into the row buffer, as well as minimum
burst lengths and interface width. In our experience with
bloom filters, the performance benefits of a sort-reduce accel-
erator was enough to raise the performance of a DDR3 module
beyond a Hybrid Memory Cube directly handling random
updates [81].

We also argue that the configuration of near-storage re-
configurable acceleration as employed by GraFBoost, is the
desirable architecture for future out-of-core analytics systems.
First, accelerators are necessary to minimize the performance
impact of the additional sort-reduce operation. This means the
user-defined update function also must be implemented in the
accelerator to avoid the communication bottleneck. Second,
the accelerator should be positioned near-storage to avoid the

1



bandwidth limitations of PCIe relative to storage performance.
Even with reduced I/O amplification brought by sort-reduce,
we noticed that still the most significant performance bottle-
neck is the storage performance. The storage system perfor-
mance can readily be improved with more devices, in theory
even to DRAM levels. But without near-storage acceleration,
actual attainable performance quickly becomes limited by the
host-side PCIe bandwidth. We note that even with near-storage
acceleration, the I/O capabilities of individual accelerators can
become a limiting factor at such high bandwidth. We describe
a potential architectural solution in the following section.

Another observations is that in reality, out-of-core accel-
erator systems likely do not need to provision enough raw
storage bandwidth to match the DRAM module it is aiming
to replace. As long as I/O amplification is kept to minimal
with approaches such as sort-reduce, we notice that the out-
of-core system can outperform even fully in-memory systems
with higher raw memory bandwidth, as long as the out-of-core
system is employing accelerator optimizations such as efficient
data-specific compression schemes, accelerating computation-
intensive phases of execution, as well as reduced intermediate
memory operations via a deep hardware pipeline [80], [84].

On the other hand, we also discovered a subset of graph
applications which are not handled effectively with the GraF-
Boost approach. The first category of applications include
those with relatively large vertex data structures, which would
cause low I/O amplification when accessed directly. Examples
we encountered include graph neural networks with large
feature maps per vertex (small feature maps were very efficient
with sort-reduce). For these examples, the I/O amplification
from page-granuarity access is lower than that of making
multiple sorting passes for sort-reduce. The solution to this
issue would simply be to switch modes in such cases from sort-
reduce to conventional in-memory caches, as we will describe
in the next section. The second, rarer category of applications
which are ineffective with sort-reduce, are those with complex,
non-associative update functions. Examples we encountered
include subgraph isomorphism with large query graphs. While
hardware-accelerated sorting without reduction still results in
significantly lower I/O amplification, these applications did not
enjoy the order of magnitude storage access reduction enjoyed
by other applications.

III. MOVING FORWARD

Based on our success with GraFBoost and subsequent sys-
tem designs, we have identified the additional advancements
necessary for a general-purpose graph analytics system based
on these ideas.

First, the system must be able to handle large, and/or
variable-length data in each vertex. As mentioned in the
previous section, large vertex data can be simply handled
by excluding them from sort-reduce and instead applying
them directly to storage, coupled with conventional in-memory
caching. Variable-length vertex data requires an additional
indirect index structure which can also be out-of-core, but its
overhead is not expected to be high. This is because after

sort reduce, index access would always be in an efficient,
monotonically increasing pattern during updates.

Second, the near-storage accelerator must be able to handle
the DRAM-level aggregate bandwidth of a large number of
storage devices. However, individual accelerator packages will
likely have bandwidth limitations due to pin count, while fast
memory interfaces such as silicon interposers and 3D stacking
are not feasible at this scale due to the sheer number of
storage devices required to reach the desirable bandwidth. As
a result, our target design will involve multiple near-storage
accelerators communicating with an array of storage devices.
For efficient use of distributed storage and its bandwidth by
the near-storage accelerator, without being limited by host-side
PCIe bandwidth, the accelerators will need to network over a
non-blocking N-to-N fabric. A good choice may be a PCIe
switch for P2P communication similar to the choice made by
Samsung SmartSSD [82], or a sideband mesh network like the
NVIDIA NVLink or BlueDBM [72].

Once the out-of-core analytics accelerator becomes as pow-
erful as we envision above, it will become necessary to
make this resource elastically allocatable and composable, to
minimize resource fragmentation and achieve even better cost-
effectiveness in a cloud environment. We expect low-latency
communication fabric such as CXL to be extremely useful in
facilitating this goal.

IV. CONCLUSION

While we are currently mainly focusing on NAND-flash
fabric due to their cost-effective availability, emerging cost-
effective memory technologies including PCM, STT-MRAM,
and FeRAM all have similar restrictions in terms of page
size and latency limitations. In light of these trends, coupled
with the ever-increasing requirement for data collection and
processing, we expect near-storage data management acceler-
ators akin to sort-reduce and GraFBoost to become a critical
component of future systems for the continued scalability of
large, data-intensive applications.

REFERENCES

[79] N. Cadenelli, S.-W. Jun, J. Polo, A. Wright, D. Carrera, and Arvind,
“Enabling genomics pipelines in commodity personal computers with
flash storage,” Frontiers in genetics, vol. 12, p. 615958, 2021.

[80] S. Kang, J. An, J. Kim, and S.-W. Jun, “Mithrilog: Near-storage
accelerator for high-performance log analytics,” in MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, 2021,
pp. 434–448.

[81] S. Kang, T. S. G. Nerella, S. Uppoor, and S.-W. Jun, “Bunchbloomer:
Cost-effective bloom filter accelerator for genomics applications,” in
2022 32nd International Conference on Field-Programmable Logic and
Applications (FPL). IEEE, 2022, pp. 9–16.

[82] J. H. Lee, H. Zhang, V. Lagrange, P. Krishnamoorthy, X. Zhao, and Y. S.
Ki, “Smartssd: Fpga accelerated near-storage data analytics on ssd,” IEEE
Computer architecture letters, vol. 19, no. 2, pp. 110–113, 2020.

[83] G. Sun and S.-W. Jun, “Columnburst: a near-storage accelerator for
memory-efficient database join queries,” in roceedings of the 11th ACM
SIGOPS Asia-Pacific Workshop on Systems, 2020.

[84] G. Sun, S. Kang, and S.-W. Jun, “Burstz: a bandwidth-efficient scientific
computing accelerator platform for large-scale data,” in Proceedings of
the 34th ACM International Conference on Supercomputing, 2020, pp.
1–12.

2


