
RETROSPECTIVE: A First-Order Superscalar
Processor Model

Tejas Karkhanis1 James E. Smith2

1Alphabet, Inc. 2University of Wisconsin-Madison (Emeritus)

I. BACKGROUND
At the time of the 31st ISCA, out-of-order superscalar

processors with speculative execution had become a
mainstay of high performance processor design. Arriving at
an optimal design entailed deciding on benchmarks, coding
a cycle accurate trace-driven and/or execution-driven
simulator, and performing relatively detailed experiments.
Insights on how to optimize the design were extracted
post-hoc. In industry, design exploration would often start
with a “2X design” configuration of an existing familiar
design, where all structures would be scaled by 2X. The
design process with only detailed cycle accurate simulation,
while necessary, would be time consuming and would not
provide insight into the design choice.

II. DEVELOPING THE IDEA
Our hypothesis was that mechanistic models based on the

first principles of governing processor dynamics can (1)
provide deeper insights into inner workings of an
out-of-order superscalar processor, and (2) complement
detailed simulation and provide a more efficient design
optimization process. Initially, we investigated the inner
workings of data cache misses[6] using SimpleScalar[7].
There had been prior attempts at modeling processor core
performance, however prior models were computationally
and conceptually complex[8, 9, 10] or modeled only a
specific part of the processor[11,12].

We started by taking a physics-like experimental
approach to determine whether the principle of
superposition could be applied to decompose the modeling
problem. We conducted a series of simulation experiments
where we first removed all miss-events to model ideal
execution and then simulated realistic miss-events one at a
time. Summing the cycles per instruction (CPI) increments
from the individual runs gave results very close to the CPI
when all miss-events were simulated. This result was
encouraging and allowed us to focus on understanding ideal
behavior and the different miss-events independently.

Ideal performance is determined only by the true
dependences with the upper limit set by the issue width. We
observed that under ideal conditions the critical dependence
chain of the instructions in the Reorder Buffer (ROB)
determines performance. Previous efforts at understanding
performance such as those of Riseman and Foster[11] and

Taha and Willis[12], inspired us to look at modeling ideal
performance by considering the average critical path length
given a ROB-sized set of consecutive instructions.

Our experiments demonstrated that the miss-events were
separable for analysis. Different miss-events, however, had
different characteristics and needed to be modeled
appropriately.

For front-end instruction cache misses, an insight was
that the miss penalty is independent of the front-end
pipeline; it depends largely on the miss delay.

Front-end branch mispredictions had to be handled
differently than instruction cache misses. The transient of
draining and refilling the execution backend led to the
insight that the branch misprediction penalty is not
necessarily equal to the pipeline depth alone; it can be much
more than the pipeline depth unlike a common assumption
at the time.

The backend miss-event model, exemplified by data
cache misses, derived from our previous work on
understanding the inner workings of a data cache miss[6].
In that work, we were able to mathematically model the
effect of the number of inflight load misses on performance.

III. WHAT WE LEARNT AND WHAT FOLLOWED
With the mechanistic model we were able to explain:
● Why branch predictor accuracy should scale

superlinearly as a function of increased back-end
capacity, and therefore demonstrate that the “2x
design” method is too simplistic.

● How to reduce the instruction cache miss penalty
by selectively increasing instruction fetch
bandwidth after a cache miss.

● Why the data cache miss penalty decreases
significantly as the number of inflight data cache
misses increases.

After paper publication, mechanistic modeling
experienced an uptick in interest. We received queries from
other research groups regarding better versions of the
model, applications of the model, and requests to include
the modeling process in graduate school courses.

As a next step, we developed an optimization process
based on the model insights. By 2005 we were able to
arrive at a one-shot model for determining key parameters
of a processor configuration based on the issue width and



program characteristics. With this optimization method, we
were able to provide application specific configurations for
out-of-order superscalar processors. Furthermore, we were
able to derive the ratio of issue buffer size to reorder buffer
size, which tracked the ratio for actual implementations[13].

Working with Lieven Eeckhout’s group in Ghent
University, insights from the model were applied to the
design of a cost-efficient Performance Counter Unit [1,2,3].
A related “top-down” method is implemented in
out-of-order superscalar processors, for example in Intel’s
processors [4]. “Top-down Analysis” is also supported and
implemented in the Linux distributions [5].

IV. ACKNOWLEDGEMENTS
We would like to thank the SRC contract 2000-HJ782,

NSF grants CCR-9900610, CCR-0311361, EIA0071924,
IBM, and Intel for making this and follow-on work
possible.

REFERENCES
[1] S. Eyerman, L. Eeckhout, T. Karkhanis and J. E. Smith, "A performance

counter architecture for computing accurate CPI components", ACM
SIGPLAN Notices, vol. 41, no. 11, pp. 175-184, 2006.

[2] S. Eyerman, L. Eeckhout, T. Karkhanis and J. E. Smith, "A mechanistic
performance model for superscalar out-of-order processors", ACM
Transactions on Computer Systems, vol. 27, no. 2, pp. 1-37, 2009.

[3] S. Eyerman, L. Eeckhout, T. Karkhanis and J. E. Smith, "A top-down
approach to architecting CPI component performance counters", Micro
IEEE, vol. 27, no. 1, pp. 84-93, 2007.

[4] Ahmad Yasin, "A Top-Down method for performance analysis and
counters architecture", IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2014.

[5] “Top-Down Analysis”,
https://perf.wiki.kernel.org/index.php/Top-Down_Analysis

[6] T. Karkhanis and J. E. Smith, "A day in the life of a data cache miss",
WMPI-2, 2002.

[7] Burger, Doug, and Todd M. Austin. "The SimpleScalar tool set, version
2.0." ACM SIGARCH computer architecture news 25.3 (1997): 13-25.

[8] D. J. Ofelt, "Efficient Performance Prediction for Modern
Microprocessors," Stanford University PhD Thesis, 1999.

[9] D. B. Noonburg and J. P. Shen, "Theoretical Modeling of Superscalar
Processor Performance," International Symposium on Microarchitecture,
pp. 52-62, 1994.

[10] P. G. Emma and E. S. Davidson, "Characterization of Branch and Data
Dependencies on Programs for Evaluating Pipeline Performance,"
IEEE Transactions on Computers, Vol. 36, pp. 859-875, 1987.

[11] E. Riseman and C. Foster, "The Inhibition of Potential Parallelism by
Conditional Jumps," IEEE Transactions on Computers, vol. C-21, pp.
1405-1411, 1972.

[12] T. Taha and D. S. Wills, "An Instruction Throughput Model of
Superscalar Processors," International Workshop on Rapid Systems
Prototyping, 2003, pp. 156-163.

[13] T. S. Karkhanis. Automated Design of Application-specific Superscalar
Processors (pp. 133). PhD thesis, University of Wisconsin, 2006.

https://perf.wiki.kernel.org/index.php/Top-Down_Analysis
http://scholar.google.com/scholar?hl=en&q=%7B15%7D+E.+Riseman+and+C.+Foster%2C+%22The+Inhibition+of+Potential+Parallelism+by+Conditional+Jumps%2C%22+IEEE+Transactions+on+Computers%2C+vol.+C-21%2C+pp.+1405-1411%2C+1972.

