
RETROSPECTIVE: HeteroOS: OS Design for
Heterogeneous Memory Management in Datacenters

Sudarsun Kannan
Rutgers University

Ada Gavrilovska
Georgia Institute of Technology

I. INSPIRATION AND MOTIVATION

In 2015, Intel and Micron announced their new, jointly-
developed 3D-XPoint persistent memory technology with the
promise of disrupting the memory-storage hierarchy. This
was preceded by Intel adding new instructions, CLWB and
PCOMMIT, aimed at better using a future persistent memory
component. The computer architecture community had long
investigated storage class and persistent memories from the
technology and integration perspective, with a smaller number
of important works focused on the software support in terms
of programmability and correctness. We joined this space
to explore the question of how to bring this technology to
the OS virtual memory level and developed pVM [O32]. As
we pursued this work, we made two important observations:
(1) Many of the workloads used in our evaluation of pVM
benefited not just from the persistence of an additional memory
component but even more so from the additional capacity. (2)
The computer architecture community was working on many
different types of memories, not just slower, persistent ones.
This motivated us to ask more concretely, what it would take
for an OS to be able to manage future heterogeneous memory
systems. And since in virtualized datacenters and clouds, our
OSes run within virtual machines, on top of hypervisors,
it was natural to extend the question and wonder how this
works in such settings, and what needs to be done across the
OS/hypervisor systems software stack.

Our work on pVM positioned us at the right point of the
design space. Unlike other approaches at the time, which
looked to expose the different persistent properties of the new
memories by carving out new persistent zones in the memory
space, we took the approach that a persistent memory node
should be exposed as a NUMA node. After all, NUMA-ness
was already an aspect of (performance) heterogeneity, and
there was a decades-long investment in the OS community
to provide support to deal with this. Why reinvent the wheel?
Obviously, just using existing NUMA mechanisms was not
sufficient. Traditional NUMA-based approaches primarily fo-
cus on enhancing data locality by maximizing CPU access
to data in the local memory socket. However, in the context
of heterogeneous memory, the challenge lies in identifying
performance-critical data and placing it in the fastest memory
while maximizing the utilization of the limited capacity of the
fast memory. Furthermore, pVM lacked dynamic placement or
data migration across heterogeneous memory. Finally, it was
completely unclear whether any support should be kept at the

OS level alone, delegated to hypervisors, or somehow split.
This motivated us to delve deeper into building HeteroOS.

II. FIGHTING THE HARDWARE RESTRICTIONS

A major question was, how to pursue this research in
the absence of real hardware prototypes of different types
of memories. We observed that most state-of-the-art research
relied on hardware instruction-level simulators. Simulators are
important, but may take days to capture just 10 seconds of
application runtime. Furthermore, using simulators to capture
the overheads imposed by the OS and virtualization layers,
such as hypercall overheads, hotness detection, page table
walks, data migration costs, locking overheads, and other
related factors, can be cumbersome and impractical.

We decided to try emulation using existing systems so as to
be able to run a full OS/hypervisor stack. We could not make
the current DRAM faster than it was, but we realized we could
explore the possibility of throttling memory (like throttling
CPU using DVFS) to make some DRAM nodes slower. Using
the Intel System Software guide and discussions with various
teams at Intel, we identified a hidden gem of throttling PCIe
registers to reduce memory frequencies, eventually throttling
memory bandwidth and latency. Through laborious effort, we
identified that throttling worked only for a few Intel processor
families; fortunately, we had just the right kind of Intel
Nehalem dual-socket system with two memory nodes. We used
the Linux extensions we developed for pVM as a starting point
for the guest OSes, Vishal’s software-based hotness tracking
mechanism [O24], and we were ready to start this work.

III. WHAT WE LEARNT

Using an emulated heterogeneous memory system allowed
us to run complex application benchmarks and a full systems
software stack and to make observations that would have
been difficult to make, at best, if not impossible, purely with
simulation. We summarize here our key lessons learned from
the design of HeteroOS, and their relevance in recent research.
Applications have different sensitivities: We provided in-
sights into the impact of heterogeneous memories on different
application types, beyond just well-studied graph processing
and data analytics applications. Future evaluations with real
heterogeneous memory systems using Intel’s Optane memory
confirmed these trends, making a case for general-purpose
vs. only domain-specific memory management solutions.
Heap and I/O pages as first-class citizen: We were first
to identify the importance of memory allocations and place-

1



ment in heterogeneous memory systems extends beyond heap
allocations to encompass other types of allocations, such as
I/O caches. Recent papers from the industry, including Meta’s
work on heterogeneous memory, reinforce our findings [3].
Maximizing direct allocations to faster memory is critical:
HeteroOS highlighted the significant benefits of prioritizing
and maximizing on-demand memory direct allocation to faster
memory over-relying on data migrations. A recent study from
Google on far-memory systems emphasized the importance of
direct allocations to fast memory, employing page compression
techniques to reduce the usage of fast memory [1].
Software bottlenecks from hotness detection can surpass
migration costs: HeteroOS identified that for memory-
intensive applications, hotness tracking overheads could ex-
ceed data migration costs, and that, in virtualized environ-
ments, exclusively assigning hotness tracking and migration
responsibilities to a hypervisor often resulted in stale or inac-
tive data migration. Follow-on research has partially addressed
these challenges by proposing parallel page migration, adding
support for kernel page migration, and hardware support.
Support for resource sharing and multitenancy support not
an afterthought: To achieve fairness and efficient resource
allocation across different memory types, HeteroOS extended
the Dominant Resource Fairness (DRF) algorithm to treat each
memory type as a distinct resource. However, it is important
to acknowledge that DRF [O19] may have limitations in
handling variable resource demands. Further advancements are
required to devise more sophisticated algorithms, and several
recent works, including from Microsoft Azure, have explored
managing heterogeneous memory for multitenant systems [2].

IV. ISCA 2017 PAPER AND PRIOR ATTEMPTS

We appreciate the feedback received from prior submissions
and the ISCA 2017 reviewers. Despite not making a direct
hardware architecture contribution, we are grateful for the
ISCA reviewers’ enthusiastic reception of our work. There
are challenges in publishing purely systems software work
that targets future hardware, as it can raise concerns among
architecture reviewers regarding the lack of hardware-level
contributions, and skepticism among systems software review-
ers regarding the future availability of such hardware. This
posed challenges in our experience with HeteroOS as well. Al-
though the reviewers raised the concern that the work may be
better suited for a systems venue, they observed that HeteroOS
”targets a timely and important problem (multiple levels in the
memory hierarchy) that will potentially become mainstream
soon enough that we need to be lining up solutions.”

The reviewers praised HeteroOS for its general principles
in supporting virtualized and non-virtualized systems and its
handling of anonymous and non-anonymous I/O pages. They
specifically noted the advantages of cross-layer collaboration
between the guest OS and hypervisor. By assigning memory
management to the guest OS and utilizing direct hardware
pagetable access for hotness detection by the hypervisor, we
effectively mitigated the risk of the hypervisor becoming a
bottleneck, particularly in multi-application scenarios. These

valuable insights greatly contributed to the acceptance of the
paper and the enhancements made in the camera-ready draft.

V. WHERE WE ARE AND OPEN CHALLENGES

We briefly summarize the hardware and software progress
since HeteroOS and highlight some open challenges.
Recent Hardware and Software Innovations: First, hard-
ware innovations have focused on developing architectural
support for heterogeneous memory technologies. Technologies
like Compute Express Link (CXL) have emerged as industry
standards, providing unified memory semantics and high-
performance connectivity. These trends will continue to further
advancements in managing heterogeneous memory.

Similarly, hardware support for memory profiling and hot-
ness tracking with techniques like PEBS has evolved. How-
ever, limitations such as coarse profiling granularity and high
sampling overhead persist. Recent studies have explored com-
bining PEBS with performance counters to alleviate hotness
detection bottlenecks, highlighting the need for hardware-
software co-design.

Finally, several new applications- and runtime-guided data
placement techniques have been proposed to overcome the
limitations of OSes in prioritizing and differentiating between
data objects within applications.
Open Challenges: Several open challenges persist.

System-level coordination involves coordinating hardware,
operating systems, and applications to manage heterogeneous
memory efficiently. Challenges include developing efficient
communication mechanisms, ensuring compatibility with ex-
isting software ecosystems, and minimizing overheads associ-
ated with managing heterogeneous memory.

Secure memory sharing and virtualization among multiple
virtual machines (VMs) or containers remains an open chal-
lenge. This includes designing secure memory-sharing mech-
anisms to prevent unauthorized access or data leakage across
applications, VMs, or containers, while ensuring performance
and efficient utilization of available memory resources.

Performance portability, code optimization, and debuggers
are crucial for achieving performance across heterogeneous
memory architectures. Designing efficient programming lan-
guages and tools involves exploring code optimization tech-
niques, memory-aware compilers, and adaptive runtime sys-
tems. Effective debugging and profiling tools are essential for
optimizing code and ensuring performance on diverse memory
architectures. While hardware-specific implementations like
CUDA support for HBMs exist, there is a need for more
generic support to enhance compatibility and usability.

Finally, managing new dimensions of memory heterogeneity,
such as for near-memory computing with fixed-function logic
or (limited) programmability, is an exciting open challenge.

REFERENCES

[1] A. Lagar-Cavilla, J. Ahn et al., “Software-Defined Far Memory in
Warehouse-Scale Computers,” in ASPLOS ’19, 2019.

[2] H. Li, D. Berger et al., “Pond: CXL-Based Memory Pooling Systems for
Cloud Platforms,” in ASPLOS’23, 2023.

[3] J. Weiner, N. Agarwal et al., “TMO: Transparent Memory Offloading in
Datacenters,” in ASPLOS’22, 2022.

2


