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I. CONTEXT

CPU and memory performance have been diverging since
the inception of microprocessors with CPU design and fabri-
cation primarily optimized for speed and DRAM for density.
Cache hierarchies exploiting locality in memory references
have been instrumental in narrowing this performance gap.
Around the time of this publication, (single-core) CPUs were
being shipped with on-chip hierarchies of 10s of KB of L1 split
instruction and data and 100s of KB of unified L2 caches.

While basic cache design was quite mature, CPU mi-
croarchitecture continued to advance with growing on-chip
transistor budgets requiring commensurate advancements in
designing cache hierarchies to bridge the CPU memory per-
formance gap. At the same time, many were also designing
and building scalable NUMA multiprocessors where accessing
remote memory was easily several times longer than local
memory and coherence often involved traversing multiple
machine nodes. Efficient cache hierarchy management and
tolerating or hiding memory access latency in such machines
would have a dramatic impact on performance.

II. LIVETIME VS. DEADTIME

Block livetime and deadtime analysis in caches dates back
to work on analytic models to predict cache miss rate [10],
[15]. In this paper, we define livetime to be the number of CPU
cycles from the time a block is brought into the cache until
the last reference hitting on the block. The deadtime is from
this last reference until the block is replaced (due to a miss
to another block). Wood et al. [15] showed that cache block
frames follow an alternating renewal process with deadtimes
being on average an order of magnitude larger than livetimes
resulting in the majority (> 80%) of a cache being dead at
any given time. The reason blocks are dead for most of their
cache residency while allowing for high (> 90%) hit rates is
because of locality of reference in memory accesses clustering
accesses in time to a small fraction of the blocks.

Figure 1 plots the cumulative distribution of deadtimes in a
32KB L1 data cache for a simulated 2GHz 8-way out-of-order
CPU with a 128-entry instruction window. The graph clearly
shows that the majority of block deadtimes are orders of
magnitude longer than even memory access latency. Predicting
the last ”touch” (i.e., a hit) to a block accurately would allow
evicting the block early and reclaiming the available space.

III. DEAD-BLOCK PREDICTION

Dead-block prediction was based on the simple observation
that control flow in programs is repetitive and therefore its im-

Fig. 1. Cache block deadtime in CPU cycles.

pact on the movement of cache blocks in the hierarchy should
also be repetitive and predictable. This observation was first [9]
applied to self-invalidation in shared-memory multiprocessors
to reduce coherence overhead by sending blocks back to their
home node when no longer needed by predicting the last touch
prior to eviction. A last-touch predictor would encode a trace
of all program counters touching the block from the time it is
brought into the cache until it is evicted.

Figure 2 [9] shows examples of instruction traces accessing
a cache block from the time the block is brought in until the
last touch prior to eviction in various control flow scenarios.
A predictor capturing the program counter trace in a signature
and using it to predict a last touch with a confidence counter
(e.g., a 2-bit counter) can self-invalidate the block at the earli-
est possible point in time to help reduce coherence overhead.
The signature was formed with an xor operation on all PCs in
the trace. The predictor showed an average accuracy of 80%
when correlated with the cache block address.

IV. DEAD-BLOCK CORRELATING PREFETCHERS

Address correlating prefetchers (e.g., Markov [4]) emerged
in the 90s as a solution to improve coverage over stream
buffers and stride predictors. These prefetchers use a history of
one or more missed cache block addresses to predict a future
address. Unfortunately, the prefetchers fell short of being
effective for three key reasons: (1) they used cache misses as
triggers for prefetching which led to minimal prefetch looka-
head because misses were often clustered, (2) they suffered
from high misprediction, overfetching (useless) blocks wasting
memory bandwidth, and (3) because miss addresses were used
as index to look up predictions, the history state space grew
with the memory working set size.
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Fig. 2. Examples of last touch in shared-memory programs.

Dead-block correlating prefetchers’ key contributions
were [8]:

• Predicting a last touch allowed orders of magnitude
lookahead (from deadtime) for prefetching (Figure 1).

• Correlating a block address with a last-touch trace al-
lowed a correlation between a data structure being ac-
cessed and a program phase reducing misprediction (and
overfetch) to a small percentage point.

• Proposed and evaluated both an on-chip 2MB version for
smaller working sets and an off-chip 8MB version trading
off memory bandwidth for a larger correlation table.

Figure 3 depicts an example of an instruction stream leading
to a prefetch and the anatomy of the prefetcher. In this
example, PCi, PCj and PCk form a 12-bit signature xor’ed
with address A2 and used as an index for the correlation
table. The paper showed that correlating a last-touch trace
with a block address improves coverage in address correlating
prefetchers to 82% with only 4% overfetch. In contrast to prior
work [4], the paper also showed that correlating bits from prior
addresses improves coverage and accuracy.

V. THE PAPER’S LEGACY

This work inspired many in the community to work on dead-
block prediction to better manage cache hierarchy capacity
beyond L1 data caches with higher accuracy or lower silicon
overhead. Timer-based (cycle or reference count) solutions [2]
ended up not being accurate because of the high variability in
timer thresholds both within and across blocks. With leakage
power projecting the end of Dennard Scaling, these techniques
were borrowed to control when to turn cache blocks on and
off [5] with voltage supply gating [11].

While dead-block optimization opportunity was even higher
with deeper hierarchies in the years that followed, dead-block
prediction in lower cache levels became even a bigger chal-
lenge as memory accesses are filtered by higher cache levels
and instruction traces in the pipeline being farther away from
lower cache levels. Khan et al., extended this work with dead-
block prediction for victim buffering [6], and set-sampling [7]
to reduce predictor state in LLCs. LLC management in the
multicore era eventually benefited mostly from work on cache
block placement/replacement policies [12].

The lasting impact of this work has been temporal stream-
ing [14] to prefetch entire streams of correlated addresses (e.g.,

Fig. 3. A dead-block correlating prefetcher.

in pointer chasing), with subsequent work on practical on-
chip/off-chip designs for recording, looking up and fetching
streams [1], [3], [13]. Examples of temporal streaming have
appeared in IBM BlueGene/Q and ARM Neoverse N2.

REFERENCES

[1] M. Ferdman and B. Falsafi, “Last-Touch Correlated Data Streaming,” in
Proceedings of the 2007 IEEE International Symposium on Performance
Analysis of Systems & Software, 2007.

[2] Z. Hu, M. Martonosi, and S. Kaxiras, “Timekeeping in the Memory
System: Predicting and Optimizing Memory Behavior,” in Proceedings
of the 29th International Symposium on Computer Architecture, 2002.

[3] A. Jain and C. Lin, “Linearizing Irregular Memory Accesses for Im-
proved Correlated Prefetching,” in Proceedings of the 46th IEEE/ACM
International Symposium on Microarchitecture, 2013.

[4] D. Joseph and D. Grunwald, “Prefetching Using Markov Predictors,”
in Proceedings of the 24th International Symposium on Computer
Architecture, 1997.

[5] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache Decay: Exploiting Gen-
erational Behavior to Reduce Cache Leakage Power,” in Proceedings of
the 28th International Symposium on Computer Architecture, 2001.
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