Retrospective: Debunking the 100X GPU vs. CPU
myth: an evaluation of throughput computing on
CPU and GPU

Victor W Lee*, Changkyu Kim', Jatin Chhugani*, Michael Deisher’, Dachyun KimY, Anthony D Nguyen$,
Nadathur Satish, Mikhail Smelyanskiy!l, Srinivas Chennupaty®, Ronak Singhal®, Pradeep Dubey®
*Google, TMeta, §Intel, 11Samsung, INvidia

I. SUMMARY OF THE ORIGINAL PAPER

The original paper published in ISCA 2010 investigated
multiple performance claims showing 1-2 orders of magnitude
performance difference in favor of GPU over CPU running
various throughput computing kernels. Our paper sought to
dig deeper into these performance claims in terms of their
various architectural, micro-architectural and algorithmic com-
ponents. We proposed a systematic framework for analyzing
the performance delta across the two parallel processors,
enumerating key attributes of CPU and GPU architectures
and related performance optimizations. Critical optimizations
identified for CPU included multi-threading, cache blocking,
and reorganization of memory accesses for SIMD-ification.
Optimizations for GPU included minimizing global synchro-
nization and using local shared buffers. Our paper also iden-
tified some fairness concerns regarding the large performance
deltas such as using single thread/single core scalar code as an
optimized proxy for a multi-core CPU, or comparing a high-
end GPU to a mobile CPU, etc. Putting it all to practice, the
paper showed how most of the CPU performance gap with
respect to GPU could be recovered using properly conducted
algorithm-architecture co-design, no different from what was
needed and undertaken for the GPU. In summary, our paper
highlighted the importance of algorithm-architecture co-design
in the emerging multi/many-core era. This co-design benefits
both GPUs and CPUs, and when it is leveraged to get optimal
performance on GPUs, it should not be ignored for the CPU
baseline.

II. SINCE 2010

Significant advancements have been made in CPU and GPU
performance since 2010, with both reaching extraordinary
levels of compute power per System-on-Chip (SoC). Parallel
hardware remains the driving force behind achieving such high
performance.

We take great pride in the extensive recognition and impact
the paper has garnered, becoming the most cited paper in
ISCA 2010 with over 1000 citations [4], and establishing a
benchmark for comparing performance across both platforms;
its influence has permeated numerous computer architecture
studies. While the primary focus of the paper centers around

comparing the performance of CPUs and GPUs in throughput
computing applications, its overarching conclusions extend far
beyond this domain. This work continues to get cited and
inspire the research community and its thought leaders to this
date. [1] [2]

At a broader level, the paper has had two lasting impacts
on the architecture community:

e Growing value-add of architecture-algorithm co-
design in parallel architectures: Given the parallel
nature of both CPUs and GPUs, both are now increas-
ingly dependent on the choice of algorithm for extract-
ing maximal performance. And more importantly, this
algorithmic choice is often different for CPU versus
GPU, given the difference in their architectural tradeoffs:
scalar-vs-SIMD, cache-vs-memory capacity and band-
width, regular-vs-irregular parallelism, different set of
fixed-function supports, etc. Therefore, an algorithm op-
timal for GPU for a certain task (such as, sorting) may be
quite sub-optimal for CPU, and vice versa. Stated differ-
ently, two architectures should not be compared without
offering to each its own optimal choice of algorithm to
extract its full potential.

o Importance of sanity-checking achieved performance
against expected performance on a given architecture:
Any claim of performance on an architecture should be
sanity-checked against its own performance model or
roofline model. This should automatically render using
unoptimized baselines invalid. In other words, perfor-
mance claims should undergo meticulous scrutiny against
fundamental resource metrics like memory bandwidth,
computation capability (e.g., FLOPs), etc. to determine
their validity before unquestioningly accepting them. It
is imperative for the research community to hold itself
accountable, demanding rigorous comparisons, and re-
jecting any research that fails to meet the standards of
due diligence.

Furthermore, the paper delved into pivotal optimization
techniques that retain their relevance in modern-day pro-
cessors. These techniques encompass a range of strategies,
including:



o Maximizing data-, thread- and function-level par-
allelisms is critical to fully utilize compute resources.
While modern GPUs require thousands of threads to
keep their processing units occupied, modern CPUs also
benefit from hundreds of threads to achieve optimal
performance.

« Cache blocking is essential for both CPUs and GPUs to
maximize cache usage, as caches play a pivotal role in
addressing the memory wall.

o Recomputing data to reduce reliance on memory
bandwidth is another effective optimization technique to
reduce the pressure on memory bandwidth for severely
bandwidth limited algorithms. However, recomputing
could require more effort in maintaining the application.

o Minimizing synchronization or utilizing low cost syn-
chronization whenever possible.

Beyond these points, other important insights that have been
gained over time include:

o Achieving a fully cache coherent view of data between
CPUs and GPUs continues to be impractical. Techniques
which were suggested then are still as relevant as before.

— Singular view of memory (amongst CPU and GPU)
— Amortize cost of synchronization with lots of com-
pute per synchronization

o Programmability is just as significant as performance. For
instance, achieving high program efficiency for irregu-
lar programs can be challenging with SIMD. Similarly,
SIMT without underlying hardware support is less ef-
ficient for programs with complex control flows. Trad-
ing compute for memory bandwidth is another example
where programmability can play an important role in
deciding whether that optimization makes sense or not.
The programmability argument was further emphasized
by the follow-up work on whether compiler technology
can close the performance gap from carefully hand-tuned
workloads. [3]

o Power has increasingly become the primary constraint
for processor architecture. To optimize power efficiency,
modern processors incorporate different types of cores
and numerous accelerators. This trend is expected to
continue in the future.

o Designing and utilizing specialized functional blocks in
System-on-Chip (SoC), such as nonlinear math functions,
is key to achieving optimal power-performance. However,
identifying the specific hardware accelerators required
for this purpose remains quite challenging. Workload
analysis will be even more important in future, especially
in the era of AL

o While chip-level performance matters, it is important to
further optimize performance of an end-to-end system,
including network, storage and supporting infrastructure.
If left unoptimized, these components can become Am-
dahl’s bottleneck and waste CPU or GPU optimization
effort.

III. CONCLUSION

We, as authors of the paper, are pleased to note that over
the last 12 or more years since this work was published
both CPUs and GPUs have grown many fold in terms of
the architectural parallelism they support. In fact, the need
as well as the practice of algorithm-architecture co-design
called out by the paper has now become widespread. This
has in turn resulted in a large collection of architecture-aware,
novel performance optimization techniques for both CPUs
and GPUs. Furthermore, these architectures have increasingly
adapted and evolved along similar lines with support for
gather-scatter, large caches, and now systolic engines for
matrix arithmetic. As a result, there is a larger set of common
optimization techniques now applicable to both CPUs and
GPUs. Consequently, reported performance speedup claims
have become better and fairer in terms of extracting the most
from each architecture’s roofline potential, as well as easier
to understand and explain. As the programming community
of these parallel processors continues to attract more domain
experts and data scientists; whereas, processor complexity
is on the rise, the architecture community needs to turn its
attention towards increased automation of such algorithm-
architecture co-design to reduce the growing industry reliance
on its performance-ninjas.

ACKNOWLEDGEMENTS

We would like to acknowledge the researchers and students
who created the benchmarks and worked on the optimizations
we used in the paper. We also would like to acknowledge the
feedback from reviewers and colleagues to make this a great

paper.
REFERENCES

[1] C. Gregg and K. Hazelwood, “Where is the data? why you cannot
debate cpu vs. gpu performance without the answer,” in (IEEE ISPASS)
IEEE International Symposium on Performance Analysis of Systems and
Software, 2011, pp. 134-144.
S. Matsuoka, J. Domke, M. Wahib, A. Drozd, and T. Hoefler, “Myths
and legends in high-performance computing,” 2023.
N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy,
M. Girkar, and P. Dubey, “Can traditional programming bridge the
ninja performance gap for parallel computing applications?” in 39th
International Symposium on Computer Architecture (ISCA 2012), June
9-13, 2012, Portland, OR, USA. 1EEE Computer Society, 2012, pp. 440—
451. [Online]. Available: https://doi.org/10.1109/ISCA.2012.6237038
[4] G. Upasani, M. D. Sinclair, A. Sampson, P. Ranganathan, D. Patterson,
S. Shah, N. Parthasarathy, and R. Jain, “Fifty years of isca: A data-driven
retrospective on key trends,” 2023.

[2

—

3

—_



