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Abstract—Dynamic Random Access Memory (DRAM) is the preva-
lent memory technology used to build main memory systems of almost
all computers. A fundamental shortcoming of DRAM is the need
to refresh memory cells to keep stored data intact. DRAM refresh
consumes energy and degrades performance. It is also a technology
scaling challenge as its negative effects become worse as DRAM cell
size reduces and DRAM chip capacity increases.

Our ISCA 2012 paper, RAIDR [1], examines the DRAM refresh
problem from a modern computing systems perspective, demonstrat-
ing its projected impact on systems with higher-capacity DRAM chips
expected to be manufactured in the future. It proposes and evaluates
a simple and low-cost solution that greatly reduces the performance &
energy overheads of refresh by exploiting variation in data retention
times across DRAM rows. The key idea is to group the DRAM rows
into bins in terms of their minimum data retention times, store the
bins in low-cost Bloom filters, and refresh rows in different bins at
different rates. Evaluations in our paper (and later works) show that
the idea greatly improves performance & energy efficiency and its
benefits increase with DRAM chip capacity. The paper embodies an
approach we have termed system-DRAM co-design.

This short retrospective provides a brief analysis of our RAIDR
paper and its impact. We briefly describe the mindset and circum-
stances that led to our focus on the DRAM refresh problem and
RAIDR’s development, discuss later works that provided improved
analyses and solutions, and make some educated guesses on what the
future may bring on the DRAM refresh problem (and more generally
in DRAM technology scaling).

I. BACKGROUND, APPROACH & MINDSET
At the time we began our focus on solving the DRAM refresh

(i.e., data retention) challenge in late 2010, my research group,
SAFARI, had already been working on memory controllers and
memory technology scaling issues, motivated by many challenges
memory systems, in particular the DRAM technology [2], have
been facing (as described in, e.g., [3–5]). Our intense work on
memory systems started during my tenure at Microsoft Research
from 2006 and continued at CMU from 2009. For example, we
had developed better memory schedulers for multi-core processors
(e.g., [6–10]), developed platforms to perform voltage and fre-
quency scaling to save DRAM energy (e.g., [11]) and architected
emerging memory technologies to replace or augment DRAM
(e.g., [12–14]). We were quite excited about the prospect of
much more capable memory controllers in enabling better memory
systems. As such, we were pursuing new memory-controller and
system-level techniques to 1) overcome the challenging device-
and circuit-level scaling issues of memory technologies and 2)
better exploit underlying characteristics of memory technology;
an approach we termed system-DRAM co-design [4, 5].

RAIDR is a product of this approach. Our focus on data
retention issues and other low-level issues in DRAM especially
increased via discussions with the Samsung DRAM Design Team,
who visited us in April 2011 and encouraged the development
of our system-level solutions to DRAM issues, enabling strong
support both technically and funding-wise. In fact, much of
our ensuing research in DRAM was supported by generous gift
funding by and technical discussions with Samsung based on a
proposal entitled ”New ideas to enhance DRAM scaling: Scaling-
aware controller design and co-design of DRAM and controllers”
(Intel provided similar gift funding and technical discussions).

II. CONTRIBUTIONS AND IMPACT OF RAIDR
RAIDR is the first work to propose a low-cost memory con-

troller technique that reduces refresh operations by exploiting
variation in data retention times across DRAM rows. Its appeal
comes from its simplicity and low cost, enabled by the careful use
of Bloom filters [15]. Exploiting the DRAM data retention time
distribution [16], RAIDR can eliminate a very large fraction (e.g.,
∼75% or more) of refresh operations with very small hardware
cost at the memory controller.

Apart from the new technique it introduced, we believe the
RAIDR paper made two other major contributions that have
enabled a large number of future works and new ideas. First, it
provided an empirical scaling analysis that clearly demonstrated
the importance of the DRAM refresh problem in modern systems:
if nothing is done about it, DRAM refresh would waste almost
half of the throughput and half of the energy of a high-capacity
64-Gb DRAM chip! This analytical prediction encouraged more
works in the topic area. Second, it demonstrated a methodical way
of exploiting cell-level heterogeneous data retention times at the
system (e.g., memory controller) level: if data retention times of
DRAM rows are accurately known, the system can use them to
optimize DRAM refresh and get rid of most refresh operations.
This demonstration enabled other works to develop 1) methods for
accurately determining DRAM data retention times and 2) other
system-level approaches to optimize DRAM behavior using data
retention time information.

III. BUILDING ON RAIDR AND MAKING IT WORK
We believe RAIDR enabled a refreshing approach to DRAM

refresh. Its largest contribution could be the works it has inspired
that rigorously examined the questions of 1) how to perform
accurate DRAM data retention time profiling, 2) how to overcome
potential hurdles that stand in the way of obtaining accurate
minimum data retention times, 3) how to reliably get rid of
unnecessary refresh operations.

We wanted to make RAIDR work in a real system setting.
To this end, collaboratively with Intel, we developed an FPGA-
based flexible DRAM testing infrastructure [17] that enabled us
to rigorously test data retention times of cells in real DDR3
DRAM chips. Using this infrastructure, later open sourced as
SoftMC [18, 19] and DRAM Bender [20, 21], we experimentally
examined practical issues that affect the accuracy (and perfor-
mance) of DRAM data retention time profiling. We analyzed
two major issues that make such profiling very challenging: 1)
data pattern dependence (DPD) of retention times [17, 22], and 2)
the variable retention time (VRT) phenomenon [17, 23, 24]. Our
follow-up work, which appeared at ISCA 2013 [17], provides a
detailed experimental analysis of these challenges in cutting-edge
DRAM chips, demonstrating that ideas like RAIDR that depend on
accurate identification of retention times are not easy to exploit
in practice. Later works (e.g., [25–32]) developed new methods
for making RAIDR-like techniques more practical by tackling
especially the DPD and VRT problems and enhancing retention
time profiling methods to work in the presence of DPD and VRT,
usually by exploiting ECC techniques that have since become
mainstream in DRAM chips (see [31–33]) to tolerate VRT [34].

The development of our flexible FPGA-based DRAM testing
infrastructure also enabled experimental DRAM research in direc-
tions that are completely different from retention time profiling and
refresh. These include studies that provided valuable experimen-
tal data on various DRAM characteristics, including RowHam-
mer [20, 35–44], latency [45–48], voltage-latency-reliability rela-
tionship [49], power consumption and modeling [50]. Using this
infrastructure, later research also demonstrated the ability of real
off-the-shelf DRAM chips to perform data copy/initialization and
bulk bitwise operations [51–55], implement physical unclonable
functions [56], and generate true random numbers [57, 58]. We
believe the investment we made to try to make RAIDR work
using a real FPGA-based infrastructure helped us and the broader
research community uncover many interesting characteristics of
DRAM chips and propose new ideas to make DRAM-based
systems more secure, reliable, efficient, and high performance.

Other later works provided refined models of DRAM refresh’s
impact on system performance (e.g., [59, 60]) and developed new
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methods to reduce DRAM refresh’s negative impact on perfor-
mance & energy (e.g., [41, 59–67]). Our HPCA 2014 paper [59]
developed a more refined projection of the effect of DRAM refresh
as technology scales. AVATAR in DSN 2015 [26] and REAPER
in ISCA 2017 [30] enabled more practical ways of exploiting
heterogeneous retention times in the presence of VRT. Our recent
work [66] shows that with a more flexible DRAM interface that
gives some autonomy to DRAM chips, RAIDR can be more
efficiently implemented inside the DRAM chip.

IV. SUMMARY AND FUTURE OUTLOOK
RAIDR is a nice example of how enthusiastic support from

industry can foster new ideas that can open up many new analyses
and other ideas. We were inspired by our deep technical discus-
sions with especially Samsung and Intel, along with prior works
that described DRAM technology scaling challenges (e.g., [3])
and that developed promising solutions (e.g., [68, 69]). Engineers
from Samsung and Intel later wrote an insightful paper [34]
on DRAM scaling challenges, which described refresh as a key
problem and advocated a controller-DRAM co-design approach as
we had been advocating [1, 4]. RAIDR was also a nice example
of how teaching & research smoothly feed each other: much of
the research was done as part of a group project in the Parallel
Computer Architecture class I taught at CMU in Fall 2011.

Looking forward, DRAM technology scaling is getting worse
and data retention will continue to be an important issue [34, 70].
The negative effects of DRAM refresh will be (and are being)
exacerbated by other technology scaling issues like RowHam-
mer [35] that require even more refreshes as a solution [41, 44, 71].
We believe there are a lot more new ideas and techniques to
develop to minimize the impact of refresh on computing systems.
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