
Retrospective: RAIDR: Retention-Aware Intelligent DRAM Refresh
Onur Mutlu
ETH Zürich

Abstract—Dynamic Random Access Memory (DRAM) is the preva-
lent memory technology used to build main memory systems of almost
all computers. A fundamental shortcoming of DRAM is the need
to refresh memory cells to keep stored data intact. DRAM refresh
consumes energy and degrades performance. It is also a technology
scaling challenge as its negative effects become worse as DRAM cell
size reduces and DRAM chip capacity increases.

Our ISCA 2012 paper, RAIDR [1], examines the DRAM refresh
problem from a modern computing systems perspective, demonstrat-
ing its projected impact on systems with higher-capacity DRAM chips
expected to be manufactured in the future. It proposes and evaluates
a simple and low-cost solution that greatly reduces the performance &
energy overheads of refresh by exploiting variation in data retention
times across DRAM rows. The key idea is to group the DRAM rows
into bins in terms of their minimum data retention times, store the
bins in low-cost Bloom filters, and refresh rows in different bins at
different rates. Evaluations in our paper (and later works) show that
the idea greatly improves performance & energy efficiency and its
benefits increase with DRAM chip capacity. The paper embodies an
approach we have termed system-DRAM co-design.

This short retrospective provides a brief analysis of our RAIDR
paper and its impact. We briefly describe the mindset and circum-
stances that led to our focus on the DRAM refresh problem and
RAIDR’s development, discuss later works that provided improved
analyses and solutions, and make some educated guesses on what the
future may bring on the DRAM refresh problem (and more generally
in DRAM technology scaling).

I. BACKGROUND, APPROACH & MINDSET
At the time we began our focus on solving the DRAM refresh

(i.e., data retention) challenge in late 2010, my research group,
SAFARI, had already been working on memory controllers and
memory technology scaling issues, motivated by many challenges
memory systems, in particular the DRAM technology [2], have
been facing (as described in, e.g., [3–5]). Our intense work on
memory systems started during my tenure at Microsoft Research
from 2006 and continued at CMU from 2009. For example, we
had developed better memory schedulers for multi-core processors
(e.g., [6–10]), developed platforms to perform voltage and fre-
quency scaling to save DRAM energy (e.g., [11]) and architected
emerging memory technologies to replace or augment DRAM
(e.g., [12–14]). We were quite excited about the prospect of
much more capable memory controllers in enabling better memory
systems. As such, we were pursuing new memory-controller and
system-level techniques to 1) overcome the challenging device-
and circuit-level scaling issues of memory technologies and 2)
better exploit underlying characteristics of memory technology;
an approach we termed system-DRAM co-design [4, 5].

RAIDR is a product of this approach. Our focus on data
retention issues and other low-level issues in DRAM especially
increased via discussions with the Samsung DRAM Design Team,
who visited us in April 2011 and encouraged the development
of our system-level solutions to DRAM issues, enabling strong
support both technically and funding-wise. In fact, much of
our ensuing research in DRAM was supported by generous gift
funding by and technical discussions with Samsung based on a
proposal entitled ”New ideas to enhance DRAM scaling: Scaling-
aware controller design and co-design of DRAM and controllers”
(Intel provided similar gift funding and technical discussions).

II. CONTRIBUTIONS AND IMPACT OF RAIDR
RAIDR is the first work to propose a low-cost memory con-

troller technique that reduces refresh operations by exploiting
variation in data retention times across DRAM rows. Its appeal
comes from its simplicity and low cost, enabled by the careful use
of Bloom filters [15]. Exploiting the DRAM data retention time
distribution [16], RAIDR can eliminate a very large fraction (e.g.,
∼75% or more) of refresh operations with very small hardware
cost at the memory controller.

Apart from the new technique it introduced, we believe the
RAIDR paper made two other major contributions that have
enabled a large number of future works and new ideas. First, it
provided an empirical scaling analysis that clearly demonstrated
the importance of the DRAM refresh problem in modern systems:
if nothing is done about it, DRAM refresh would waste almost
half of the throughput and half of the energy of a high-capacity
64-Gb DRAM chip! This analytical prediction encouraged more
works in the topic area. Second, it demonstrated a methodical way
of exploiting cell-level heterogeneous data retention times at the
system (e.g., memory controller) level: if data retention times of
DRAM rows are accurately known, the system can use them to
optimize DRAM refresh and get rid of most refresh operations.
This demonstration enabled other works to develop 1) methods for
accurately determining DRAM data retention times and 2) other
system-level approaches to optimize DRAM behavior using data
retention time information.

III. BUILDING ON RAIDR AND MAKING IT WORK
We believe RAIDR enabled a refreshing approach to DRAM

refresh. Its largest contribution could be the works it has inspired
that rigorously examined the questions of 1) how to perform
accurate DRAM data retention time profiling, 2) how to overcome
potential hurdles that stand in the way of obtaining accurate
minimum data retention times, 3) how to reliably get rid of
unnecessary refresh operations.

We wanted to make RAIDR work in a real system setting.
To this end, collaboratively with Intel, we developed an FPGA-
based flexible DRAM testing infrastructure [17] that enabled us
to rigorously test data retention times of cells in real DDR3
DRAM chips. Using this infrastructure, later open sourced as
SoftMC [18, 19] and DRAM Bender [20, 21], we experimentally
examined practical issues that affect the accuracy (and perfor-
mance) of DRAM data retention time profiling. We analyzed
two major issues that make such profiling very challenging: 1)
data pattern dependence (DPD) of retention times [17, 22], and 2)
the variable retention time (VRT) phenomenon [17, 23, 24]. Our
follow-up work, which appeared at ISCA 2013 [17], provides a
detailed experimental analysis of these challenges in cutting-edge
DRAM chips, demonstrating that ideas like RAIDR that depend on
accurate identification of retention times are not easy to exploit
in practice. Later works (e.g., [25–32]) developed new methods
for making RAIDR-like techniques more practical by tackling
especially the DPD and VRT problems and enhancing retention
time profiling methods to work in the presence of DPD and VRT,
usually by exploiting ECC techniques that have since become
mainstream in DRAM chips (see [31–33]) to tolerate VRT [34].

The development of our flexible FPGA-based DRAM testing
infrastructure also enabled experimental DRAM research in direc-
tions that are completely different from retention time profiling and
refresh. These include studies that provided valuable experimen-
tal data on various DRAM characteristics, including RowHam-
mer [20, 35–44], latency [45–48], voltage-latency-reliability rela-
tionship [49], power consumption and modeling [50]. Using this
infrastructure, later research also demonstrated the ability of real
off-the-shelf DRAM chips to perform data copy/initialization and
bulk bitwise operations [51–55], implement physical unclonable
functions [56], and generate true random numbers [57, 58]. We
believe the investment we made to try to make RAIDR work
using a real FPGA-based infrastructure helped us and the broader
research community uncover many interesting characteristics of
DRAM chips and propose new ideas to make DRAM-based
systems more secure, reliable, efficient, and high performance.

Other later works provided refined models of DRAM refresh’s
impact on system performance (e.g., [59, 60]) and developed new

1



methods to reduce DRAM refresh’s negative impact on perfor-
mance & energy (e.g., [41, 59–67]). Our HPCA 2014 paper [59]
developed a more refined projection of the effect of DRAM refresh
as technology scales. AVATAR in DSN 2015 [26] and REAPER
in ISCA 2017 [30] enabled more practical ways of exploiting
heterogeneous retention times in the presence of VRT. Our recent
work [66] shows that with a more flexible DRAM interface that
gives some autonomy to DRAM chips, RAIDR can be more
efficiently implemented inside the DRAM chip.

IV. SUMMARY AND FUTURE OUTLOOK
RAIDR is a nice example of how enthusiastic support from

industry can foster new ideas that can open up many new analyses
and other ideas. We were inspired by our deep technical discus-
sions with especially Samsung and Intel, along with prior works
that described DRAM technology scaling challenges (e.g., [3])
and that developed promising solutions (e.g., [68, 69]). Engineers
from Samsung and Intel later wrote an insightful paper [34]
on DRAM scaling challenges, which described refresh as a key
problem and advocated a controller-DRAM co-design approach as
we had been advocating [1, 4]. RAIDR was also a nice example
of how teaching & research smoothly feed each other: much of
the research was done as part of a group project in the Parallel
Computer Architecture class I taught at CMU in Fall 2011.

Looking forward, DRAM technology scaling is getting worse
and data retention will continue to be an important issue [34, 70].
The negative effects of DRAM refresh will be (and are being)
exacerbated by other technology scaling issues like RowHam-
mer [35] that require even more refreshes as a solution [41, 44, 71].
We believe there are a lot more new ideas and techniques to
develop to minimize the impact of refresh on computing systems.

REFERENCES
[1] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in ISCA,

2012.
[2] R. H. Dennard, “Field-effect Transistor Memory,” 1968, US Patent 3,387,286.
[3] J. A. Mandelman et al., “Challenges and Future Directions for the Scaling

of Dynamic Random-Access Memory (DRAM),” IBM JRD, 2002.
[4] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” IMW,

2013.
[5] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in

Memory Systems,” SUPERFRI, 2014.
[6] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling

for Chip Multiprocessors,” in MICRO, 2007.
[7] O. Mutlu et al., “Parallelism-Aware Batch Scheduling: Enhancing Both

Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.
[8] Y. Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differences

in Memory Access Behavior,” in MICRO, 2010.
[9] Y. Kim et al., “ATLAS: A Scalable and High-performance Scheduling

Algorithm for Multiple Memory Controllers,” in HPCA, 2010.
[10] S. Muralidhara, “Reducing Memory Interference in Multicore Systems via

Application-aware Memory Channel Partitioning,” in MICRO, 2011.
[11] H. David et al., “Memory power management via dynamic voltage/frequency

scaling,” in ICAC, 2011.
[12] B. C. Lee et al., “Architecting Phase Change Memory as a Scalable DRAM

Alternative,” in ISCA, 2009.
[13] H. Yoon et al., “Row Buffer Locality Aware Caching Policies for Hybrid

Memories,” in ICCD, 2012.
[14] J. Meza et al., “Enabling Efficient and Scalable Hybrid Memories using Fine-

granularity DRAM Cache Management,” CAL, 2012.
[15] B. Bloom, “Space/Time Trade-Offs in Hash Coding with Allowable Errors,”

CACM, 1970.
[16] K. Kim and J. Lee, “A new investigation of data retention time in truly

nanoscaled DRAMs,” IEEE EDL, vol. 30, no. 8, 2009.
[17] J. Liu et al., “An Experimental Study of Data Retention Behavior in Modern

DRAM Devices: Implications for Retention Time Profiling Mechanisms,” in
ISCA, 2013.

[18] H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source Infrastruc-
ture for Enabling Experimental DRAM Studies,” in HPCA, 2017.

[19] “SoftMC Repository,” https://github.com/CMU-SAFARI/SoftMC/.
[20] A. Olgun et al., “DRAM Bender: An Extensible and Versatile FPGA-based

Infrastructure to Easily Test State-of-the-art DRAM Chips,” TCAD, 2023.
[21] “DRAM Bender,” https://github.com/CMU-SAFARI/DRAM-Bender.
[22] Y. Nakagome et al., “The impact of data-line interference noise on DRAM

scaling,” JSSC, 1988.
[23] D. Yaney et al., “A Meta-stable Leakage Phenomenon in DRAM Charge

Storage - Variable Hold Time,” in IEDM, 1987.
[24] P. J. Restle et al., “DRAM Variable Retention Time,” in IEDM, 1992.
[25] S. Khan, “The Efficacy of Error Mitigation Techniques for DRAM Retention

Failures: A Comparative Experimental Study,” in SIGMETRICS, 2014.
[26] M. K. Qureshi et al., “AVATAR: A Variable-Retention-Time (VRT) Aware

Refresh for DRAM Systems,” in DSN, 2015.
[27] S. Khan et al., “PARBOR: An Efficient System-Level Technique to Detect

Data Dependent Failures in DRAM,” in DSN, 2016.
[28] S. Khan et al., “A Case for Memory Content-Based Detection and Mitigation

of Data-Dependent Failures in DRAM,” CAL, 2016.

[29] S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM Failures
by Exploiting Current Memory Content,” in MICRO, 2017.

[30] M. Patel, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions,” in ISCA, 2017.

[31] M. Patel et al., “Bit-Exact ECC Recovery (BEER): Determining DRAM On-
Die ECC Functions by Exploiting DRAM Data Retention Characteristics,”
in MICRO, 2020.

[32] M. Patel et al., “HARP: Practically and Effectively Identifying Uncorrectable
Errors in Main Memory Chips That Use On-Die ECC,” in MICRO, 2021.

[33] M. Patel et al., “Understanding and Modeling On-die Error Correction in
Modern DRAM: An Experimental Study using Real Devices,” in DSN, 2019.

[34] U. Kang et al., “Co-Architecting Controllers and DRAM to Enhance DRAM
Process Scaling,” in The Memory Forum, 2014.

[35] Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” in ISCA, 2014.

[36] J. S. Kim et al., “Revisiting RowHammer: An Experimental Analysis of
Modern DRAM Devices and Mitigation Techniques,” in ISCA, 2020.

[37] L. Orosa, “A Deeper Look into RowHammer’s Sensitivities: Experimental
Analysis of Real DRAM Chips and Implications on Future Attacks and
Defenses,” in MICRO, 2021.

[38] M. Farmani et al., “RHAT: Efficient RowHammer-Aware Test for Modern
DRAM Modules,” in ETS, 2021.

[39] P. Frigo et al., “TRRespass: Exploiting the Many Sides of Target Row
Refresh,” in S&P, 2020.

[40] H. Hassan et al., “Uncovering In-DRAM RowHammer Protection Mecha-
nisms: A New Methodology, Custom RowHammer Patterns, and Implica-
tions,” in MICRO, 2021.

[41] A. G. Yağlikci et al., “HiRA: Hidden Row Activation for Reducing Refresh
Latency of Off-the-Shelf DRAM Chips,” in MICRO, 2022.

[42] A. G. Yağlıkcı et al., “Understanding RowHammer Under Reduced Wordline
Voltage: An Experimental Study Using Real DRAM Devices,” in DSN, 2022.

[43] A. Olgun et al., “An Experimental Analysis of RowHammer in HBM2
DRAM Chips,” in DSN Disrupt, 2023.

[44] H. Luo et al., “RowPress: Amplifying Read Disturbance in Modern DRAM
Chips,” in ISCA, 2023.

[45] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the
Common-Case,” in HPCA, 2015.

[46] K. K. Chang et al., “Understanding Latency Variation in Modern DRAM
Chips: Experimental Characterization, Analysis, and Optimization,” in SIG-
METRICS, 2016.

[47] D. Lee et al., “Design-induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms,” POMACS,
2017.

[48] J. Kim et al., “Solar-DRAM: Reducing DRAM Access Latency by Exploiting
the Variation in Local Bitlines,” in ICCD, 2018.

[49] K. Chang et al., “Understanding Reduced-Voltage Operation in Modern
DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,”
in SIGMETRICS, 2017.

[50] S. Ghose et al., “What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study,” in SIGMETRICS, 2018.

[51] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” CAL, 2015.
[52] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Opera-

tions Using Commodity DRAM Technology,” in MICRO, 2017.
[53] A. Olgun et al., “PiDRAM: A Holistic End-to-end FPGA-based Framework

for Processing-in-DRAM”,” TACO, 2023.
[54] F. Gao et al., “ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs,” in MICRO, 2019.
[55] F. Gao et al., “FracDRAM: Fractional Values in Off-the-Shelf DRAM,” in

MICRO, 2022.
[56] J. S. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical

Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in
Modern Commodity DRAM Devices,” in HPCA, 2018.

[57] J. Kim, “D-RaNGe: Using Commodity DRAM Devices to Generate True
Random Numbers with Low Latency and High Throughput,” in HPCA, 2019.

[58] A. Olgun et al., “QUAC-TRNG: High-Throughput True Random Number
Generation Using Quadruple Row Activation in Commodity DRAMs,” in
ISCA, 2021.

[59] K. K. Chang et al., “Improving DRAM Performance by Parallelizing Re-
freshes with Accesses,” in HPCA, 2014.

[60] J. Mukundan et al., “Understanding and Mitigating Refresh Overheads in
High-Density DDR4 DRAM Systems,” in ISCA, 2013.

[61] C.-H. Lin et al., “SECRET: Selective Error Correction for Refresh Energy
Reduction in DRAMs,” in ICCD, 2012.

[62] P. J. Nair et al., “ArchShield: Architectural Framework for Assisting DRAM
Scaling by Tolerating High Error Rates,” in ISCA, 2013.

[63] P. Nair et al., “A Case for Refresh Pausing in DRAM Memory Systems,” in
HPCA, 2013.

[64] T. Zhang et al., “CREAM: A Concurrent-Refresh-Aware DRAM Memory
Architecture,” in HPCA, 2014.

[65] H. Hassan et al., “CROW: A Low-Cost Substrate for Improving DRAM
Performance, Energy Efficiency, and Reliability,” in ISCA, 2019.

[66] H. Hassan et al., “A Case for Self-Managing DRAM Chips: Improving
Performance, Efficiency, Reliability, and Security via Autonomous in-DRAM
Maintenance Operations,” arXiv:2207.13358, 2022.

[67] A. Das et al., “VRL-DRAM: Improving DRAM Performance via Variable
Refresh Latency,” in DAC, 2018.

[68] R. Venkatesan et al., “Retention-Aware Placement in DRAM (RAPID):
Software Methods for Quasi-Non-Volatile DRAM,” in HPCA, 2006.

[69] S. Liu et al., “Flikker: Saving DRAM Refresh-Power through Critical Data
Partitioning,” in ASPLOS, 2011.

[70] W. Kim, “A 1.1V 16Gb DDR5 DRAM with Probabilistic-Aggressor Track-
ing, Refresh-Management Functionality, Per-Row Hammer Tracking, a Multi-
Step Precharge, and Core-Bias Modulation for Security and Reliability
Enhancement,” in ISSCC, 2023.

[71] O. Mutlu et al., “Fundamentally Understanding and Solving RowHammer,”
in ASP-DAC, 2023.

2


