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I. CONTEXT

In 2012, datacenters were growing at phenomenal speed,
with forecasts of unprecedented levels of electricity con-
sumption and emissions reaching that of the airline industry.
These forecasts were exacerbated by the slowdown in Dennard
Scaling and extraordinary projections for chip power density.
Unfortunately, datacenters were built with volume servers that
inherited the basic hardware and OS organization of the 90s’
desktop PCs, with server cost (and not silicon efficiency) as the
key design criterion. Many had established that there is a fun-
damental mismatch between desktop CPU microarchitecture
and the silicon requirements of scale-out datacenter services.

At that time, novel server platforms emerged with energy-
efficient ARM (e.g., Calxeda, Marvell, SeaMicro) and MIPS
(e.g., Tilera) cores. Because memory played a pivotal role
in the cost and the basic organization of emerging scale-out
services in datacenters, 32-bit ARM cores were ill-suited in the
server setting and never found traction. Similarly, manycore
tiled CPUs were mostly optimized for on-chip communication
in parallel workloads rather than supporting server software
stacks that primarily benefited from request-level parallelism
and exhibited little communication across threads. The Scale-
Out Processors was the product of an EU-funded project,
EuroCloud Server, among ARM, EPFL, IMEC, Nokia, and
University of Cyprus, to design cloud-native servers with 64-
bit out-of-order ARM cores (derived from Cortex A-15) and
3D-stacked DRAM running cloud services.

II. SERVER WORKLOADS

The microarchitectural requirements of commercial server
workloads and their mismatch with desktop CPUs were iden-
tified in several studies in the 90s [1], [6]. In the decade
that followed, many also re-evaluated proper provisioning of
the memory hierarchies and the trade-off between single-
thread performance and throughput for database and web
workloads [5]. These studies eventually led to the first genera-
tion of workload-optimized chips (e.g., Sun Niagara and DEC
Piranha) for commercial servers.

In 2011, Hardavellas, et al. [4] were studying the impact
of technology scaling on server architecture with commercial
server workloads. Their results clearly indicated that for the
combination of stringent chip power constraints, emerging
high-bandwidth and energy-efficient memory fabrics, and the
abundance of request-level parallelism in server workloads,
a custom manycore CPU would be optimal for throughput,

power, and area in servers. Unlike conventional CPU designs,
such custom CPUs would have minimal on-chip memory (i.e.,
MBs) to hold the instruction working set of deep server soft-
ware stacks, and minimal complexity (i.e., power, area) cores
to access off-chip data and exploit request-level parallelism
across server threads.

With the emergence of open-source server software stacks,
Ferdman, et al. evaluated for the first time a suite of scale-out
workloads and identified the microarchitectural mismatch be-
tween the workloads and the servers [2]. These findings were
consistent with the characterization of the server workloads
of the 90s. In particular, they listed several microarchitec-
tural characteristics salient in scale-out workloads that were
drastically different from desktop workloads: (1) instruction
supply bottleneck due to large instruction working sets in
server software stacks, (2) low instruction-level (ILP) and
memory-level (MLP) parallelism in server software stacks,
(3) secondary data working sets that are orders of magnitude
larger than on-chip memory, and (4) low on- and off-chip
per-thread memory traffic. We also later observed that the
workloads do not really use either floating-point arithmetic
or vector operations. These requirements were at odds with
state-of-the-art volume servers at the time, which were being
shipped with half a dozen ILP-centric desktop x86 cores
padded with 12MB of LLC per socket, with two sockets
serving 10s of GB of DRAM.

III. SCALE-OUT PROCESSORS

To maximize silicon efficiency in a cloud-native processor,
we understood that the chip resources should be properly
provisioned to maximize throughput. But more importantly,
we hypothesized that a conventional “scale-up” processor
organization may not be sufficient or necessary for maximum
efficiency. Cache coherence requires prohibitive amounts of
silicon with a growing number of cores. Moreover, scaling the
scope of shared hardware resources (e.g., core count, memory
hierarchy capacity) in scale-out workloads has diminishing
returns in load balancing and increasing throughput [9].

We proposed Scale-Out Processors [8] that organize silicon
resources into multiple physical servers called “pods”. Each
pod runs a full software stack and has its data sharded across
physical memory partitions, but shares memory and I/O ports
and pins at the chip level with other pods [3]. Because pods
operate as independent servers with no contention on microar-
chitectural resources, optimally sizing a pod and scaling the

1



Fig. 1. Identifying the sweet spot for throughput per area.

number of pods per chip would allow for a linear increase
in throughput while maintaining the proper server CPU chip
core-to-cache ratio and optimizing overall datacenter costs at
the board and system level [3].

Scale-Out Processors introduced a unified metric, named
performance density (PD), to measure silicon efficiency as the
performance delivered per square millimeter of the die [8].
PD provides a straightforward method to contrast different
designs that use the same core microarchitecture, but vary in
aspects such as core count, last-level cache (LLC) size, and
interconnect parameters.

Figure 1 provides an intuitive presentation of the PD concept
using a hypothetical server workload. The x-axis represents the
core count (where each core has private L1 I/D caches) and
a fixed-size LLC (i.e., L2) shared among them. Moving right
on the graph, the pod area and core-to-cache ratio increase.
The solid black line illustrates per-core throughput, which
decreases as the core count increases due to the higher distance
between cores and the LLC, slowing down the instruction
supply. The dashed line depicts the total throughput, which
increases with more cores, but levels out due to lower per-core
throughput. Finally, the gray line corresponds to PD which
peaks at the optimal point that strikes a balance between core
area, core count, LLC size, and the distance to the LLC. For
any fixed-size LLC (e.g., 1-8MB [4]), the sweet spot moves
to the right (not shown) with leaner cores requiring less area
per core. Likewise, a larger LLC (not shown) moves the sweet
spot to more cores per pod to amortize the LLC area.

Our key findings were:
• Conventional server chips (e.g., Intel’s) were an order

of magnitude lower in efficiency because of: (1) big ILP-
centric cores with unused silicon in server workloads, and
(2) a large but slow LLC with mostly unused capacity
creating an instruction supply bottleneck [5].

• Tiled server chips (e.g., Tilera’s) had more efficient
cores, but wasted significant silicon for the LLC per tile.
Their on-chip interconnect, which optimized for parallel
workloads with core-to-core traffic, was a mismatch for
pods that mostly exhibited core-to-LLC traffic [7]. The

net result was a much lower core-to-cache ratio in silicon
area and 2x lower efficiency.

IV. THE PAPER’S LEGACY

This body of work [2], [8] laid the foundation for an ARM-
based cloud-native CPU, Cavium ThunderX, which employed
48 in-order ARM cores with 78K of L1I with 16MB (0.3MB
per core) of shared L2 (as LLC), an order-of-magnitude larger
core-to-cache silicon ratio than conventional server CPUs.

A lasting impact of the work has been to accelerate instruc-
tion supply. x86 and ARM cores alike now boast 4K-6K BTB
entries to allow the front end to fetch ahead. While Intel and
AMD have also continued the trend of building large LLCs
(1.5-4MB per core) which are overprovisoned for scale-out
workloads, both have transitioned to 2MB private L2 caches
for fast instruction supply. The Ampere cloud-native CPU,
AmpereOne, also uses 2MB private L2s, but with only 0.3MB
of LLC per core for superior silicon efficiency.

PD remains a first-order metric to evaluate silicon efficiency,
especially with the emergence of the post-Moore era and
heterogeneous logic, with area serving as a proxy for dynamic
power. With microarchitectural characteristics of monoliths
and microservices continuing to exhibit both front-end and
back-end bottlenecks in CPUs, PD can shed light on how
much silicon to provision in cores, cache hierarchies, accel-
erators, network, I/O, and glue logic to maximize throughput
while maintaining latency guarantees in datacenter services.
With 3-4x smaller cores, out-of-order ARM cores today (e.g.,
Ampere) achieve a high overall efficiency even at half of
the average per-core throughput for scale-out workloads. The
addition of SMT [2] may be a promising approach to further
increase silicon efficiency in cloud-native CPUs.

REFERENCES

[1] L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory system
characterization of commercial workloads,” in Proceedings of the 25th
Annual International Symposium on Computer Architecture, 1998.

[2] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Quantifying the
mismatch between emerging scale-out applications and modern proces-
sors,” ACM Transactions on Computer Systems, vol. 30, no. 4, 2012.

[3] B. Grot, D. Hardy, P. Lotfi-Kamran, B. Falsafi, C. Nicopoulos, and
Y. Sazeides, “Optimizing data-center tco with scale-out processors,” IEEE
Micro, vol. 32, no. 5, 2012.

[4] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward dark
silicon in servers,” IEEE Micro, vol. 31, no. 4, 2011.

[5] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki,
and B. Falsafi, “Database servers on chip multiprocessors: Limitations
and opportunities,” in Proceedings of the Third Biennial Conference on
Innovative Data Systems Research, 2007.

[6] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker,
“Performance characterization of a quad pentium pro SMP using OLTP
workloads,” in Proceedings of the 25th Annual International Symposium
on Computer Architecture, 1998.

[7] P. Lotfi-Kamran, B. Grot, and B. Falsafi, “Noc-Out: Microarchitecting a
Scale-Out Processor,” in 45th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 2012.

[8] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel,
A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-Out
Processors,” in Proceedings of the 39th International Symposium on
Computer Architecture, 2012.

[9] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “The
case for rackout: Scalable data serving using rack-scale systems,” in
Proceedings of the Seventh ACM Symposium on Cloud Computing, 2016.

2


