

RETROSPECTIVE: Smart Memories: a modular
reconfigurable architecture

Ken Mai1, Tim Paaske2, Nuwan Jayasena3, Ron Ho4, William J. Dally5,6, and Mark Horowitz5

1Carnegie Mellon University, 2Apple, 3AMD, 4Meta, 5Stanford University, 6NVIDIA

I. INTRODUCTION

This paper in ISCA 2000 sought to address what has
become the fundamental conflict in modern VLSI design:
for energy efficiency, one must tailor the computation
dataflow to match the application, yet at the same time to be
cost effective, the part must address a large market to
amortize the system design NRE costs. Power – and more
importantly power efficiency – were growing concerns and
were predicted to become first-tier issues in upcoming
designs. Over the past two decades, this conflict has only
gotten worse as technology continued to shrink transistor
cost, allowing design complexity to grow, but power per
device was scaling slowly since Dennard’s scaling had
ended. Thus, in modern chips, power is the number one
design concern, data movement dominates power
dissipation, and wire delays have grown rapidly relative to
logic gates.

To provide optimized dataflows and generality, Smart
Memories proposed what would now be called a CGRA
(coarse grain reconfigurable array) with two unique
features:

 The ability to program/tailor the memory blocks as
well as the processors

 Intermixing DRAM tiles and compute tiles on the
same die

These capabilities resulted in a reconfigurable
architecture that could be tailored to the application after
manufacturing. The design eschewed the overheads
typically associated with reconfiguration by inserting data
steering logic at repeater breakpoints where gates were
needed anyway for optimal interconnect performance.

The key to programmable memories was that the vast
majority of specialized memory systems used common
SRAM sub-arrays arranged in different ways. As such, we
showed how to insert reconfigurability/customization at
sub-array boundaries, avoiding disruptive changes to the
core SRAMs and, once again, minimizing the overheads
customarily associated with reconfigurability. This
programmable memory was built successfully a few years
later [8][9]. Finally, we implemented configurability in the
processor datapaths to enable computation to be configured
to meet the needs of the target application.

Work on the Smart Memory approach continued after
this initial ISCA paper, leading to the development of the
Smart Memories chip multiprocessor (SMASH), and finally

to a full system implementation [1]. While the original
paper was very VLSI centric, exploring how to add
configuration into the basic building blocks, continuing this
approach for the whole system design was problematic for
a small university design team. Development of a custom
processor core and ISA required development of a complete
set of software tools and infrastructure, and the configurable
memory required creating a new memory compiler. In
addition, both new blocks would require creating extensive
validation frameworks capable of handling the multitude of
possible configurations. Instead, we chose to focus on the
reconfigurable memory system architecture and used
Tensilica processor cores, adding the needed functionality
with custom instructions using the TIE language. This
allowed us to add VLIW instruction formats and the
mechanism to recover processor core state from mis-
speculation in transactional memory mode [2]. High-quality
software tools and infrastructure provided by Tensilica
allowed us to compile and run verification tests and
benchmark applications and to compare different modes,
implemented in Smart Memories architecture, e.g., cache
coherent and streaming modes [3].

For the reconfigurable memory system design the team
leveraged the existing memory compiler from the foundry
for the bulk of the SRAM data storage and synthesized the
bespoke portions of the memory architecture using standard
cells. Memory Mat metadata was stored in standard cell
flip-flops, rather than the custom SRAM cells used in the
initial reconfigurable memory testchip [8][9]. Although this
increased the overhead significantly, it drastically decreased
the needed engineering effort for the reconfigurable
memory block. The resulting design still retained the
original ideas of creating a programmable memory system,
however the goals of this memory system changed. During
the 2000’s, interest in transactional memory was growing,
so demonstrating our programmable memories could
support it became one of our goals. As validating the
resulting programmable controller posed a complex
difficult chalenge, we chose to reduce the problem to
validating that the protocols implemented on the machine
worked, which was still complex, but tractable. This led to
a new validation approach, called a relaxed scoreboard [4],
which enabled this validation. The resulting system was one
of the first to support transactional memory.

II. WHAT THE PAPER GOT RIGHT

The paper correctly predicted the rising importance of
energy efficiency, which is now critical in all systems, from
small IoT embedded systems to powerful mobile platforms

to big-iron datacenters. It also correctly foresaw the rise of
spatially configurable computing (CGRAs) to more
efficiently match an algorithm’s dataflow, distributing
compute and memory around the die to enable one to store
data closer to where it is needed. Finally it was an earlier
entry in the compute in/near memory paradigm, which
continues to be of interest.

While the specific programmable memories that were
proposed in this paper were never built into a full system,
the need for creating some programmability in the memory
system has been validated in many systems. For example,
a common pool of memory that can be used as cache or
scratchpad based on application needs is now a mainstream
feature in GPUs [10]. Programmable memories are also
used in most streaming accelerators. These machines
generally use memories which push a data stream into a
computing fabric and have another memory store the
resulting output. In these systems, the addressing, flow
control, and storage management is often “built in” to the
memory, creating programmable memory units [11].

Notably today, machine learning accelerators, which are
based on varying size Tensors, are a prime example of
memories that are programmable and deeply embedded
close to the computation. Since these memories are spatially
arranged between arrays of compute units/ALUs, the
memory structure itself is (re)programmed to serve as a
virtual FIFO of the exact tensor dimensions [5-7]. The
Neural Network graph compiler does the buffer properties
assignment at the beginning of the computation. However,
unlike Smart Memories, programmability here is typically
limited to access patterns, rather than the consistency or
coherence model.

III. WHAT THE PAPER MISSED

While the paper correctly pointed out the conflict
between specialization and the need for a large market to
amortize the high design costs, it failed to recognize an
alternate approach to resolve this conflict by dramatically
changing the way we design. If one could create a
customized design for small design costs, the lack of
generality would be less of a problem. This is important
since all reconfigurable designs seem to have significant
overheads. Fundamentally, the overhead of the
reconfigurable design comes from either over-engineering
it for yet to be known use cases (taking too long) or from
mispredicting how use cases will evolve (missing a critical
need). So, another approach to this conflict was to create
tools which allowed designers to customize their designs
from a more general chip generator. This approach was best
exemplified by the Berkeley work on Chisel [12] and
ChipYard. In fact, the Smart Memory design team took this
approach to create the silicon we eventually taped-out [1].

ACKNOWLEDGEMENTS

The authors would like to acknowledge contributions to
this retrospective by Zain Asgar, Amin Firoozshahian, Ofer
Shacham, Alex Solomatnikov, and Megan Wachs.

REFERENCES
[1] A. Firoozshahian, A. Solomatnikov, O. Shacham, Z. Asgar, S.

Richardson, C. Kozyrakis, M. Horowitz. A Memory System Design
Framework: Creating Smart Memories. 36th International Symposium
on Computer Architecture (ISCA), p. 406-417, 2009.

[2] A. Solomatnikov, A. Firoozshahian, O. Shacham, Z. Asgar, M. Wachs,
W. Qadeer, S. Richardson, M. Horowitz. Using a Configurable
Processor Generator for Computer Architecture Prototyping. 42nd
International Symposium on Microarchitecture, p. 358-369, 2009.

[3] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian, M.
Horowitz, C. Kozyrakis. Comparing Memory Systems for Chip
Multiprocessors. 34th International Symposium on Computer
Architecture (ISCA), p. 358-368, 2007.

[4] O. Shacham, M. Wachs, A. Solomatnikov, A. Firoozshahian, S.
Richardson, M. Horowitz. Verification of Chip Multiprocessor
Memory Systems Using A Relaxed Scoreboard. 41st International
Symposium on Microarchitecture, p. 294-305, 2008.

[5] Norman P. Jouppi, et al. 2017. In-Datacenter Performance Analysis of
a Tensor Processing Unit. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA '17).
Association for Computing Machinery, New York, NY, USA, 1–12.

[6] N. P. Jouppi et al., "Ten Lessons From Three Generations Shaped
Google’s TPUv4i : Industrial Product," 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), Valencia,
Spain, 2021, pp. 1-14, doi: 10.1109/ISCA52012.2021.00010.

[7] S. Lie, "Cerebras Architecture Deep Dive: First Look Inside the
Hardware/Software Co-Design for Deep Learning," in IEEE Micro,
vol. 43, no. 3, pp. 18-30, May-June 2023.

[8] K. Mai et al., "Architecture and circuit techniques for a 1.1-GHz 16-kb
reconfigurable memory in 0.18-/spl mu/m CMOS," in IEEE Journal of
Solid-State Circuits, vol. 40, no. 1, pp. 261-275, Jan. 2005.

[9] K. Mai et al., "Architecture and circuit techniques for a reconfigurable
memory block," 2004 IEEE International Solid-State Circuits
Conference, San Francisco, CA, USA, 2004, pp. 500-542.

[10] “NVIDIA Tesla V100 GPU Architecture,”
https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf.

[11] Qiaoyi Liu, Jeff Setter, Dillon Huff, Maxwell Strange, Kathleen Feng,
Mark Horowitz, Priyanka Raina, and Fredrik Kjolstad. 2023. Unified
Buffer: Compiling Image Processing and Machine Learning
Applications to Push-Memory Accelerators. ACM Trans. Archit. Code
Optim. 20, 2, Article 26 (June 2023), 26 pages.

[12] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.
2012. Chisel: constructing hardware in a Scala embedded language. In
Proceedings of the 49th Annual Design Automation Conference (DAC
'12). Association for Computing Machinery, New York, NY, USA,
1216–1225.

