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I. INTRODUCTION 

This paper in ISCA 2000 sought to address what has 
become the fundamental conflict in modern VLSI design: 
for energy efficiency, one must tailor the computation 
dataflow to match the application, yet at the same time to be 
cost effective, the part must address a large market to 
amortize the system design NRE costs. Power – and more 
importantly power efficiency – were growing concerns and 
were predicted to become first-tier issues in upcoming 
designs. Over the past two decades, this conflict has only 
gotten worse as technology continued to shrink transistor 
cost, allowing design complexity to grow, but power per 
device was scaling slowly since Dennard’s scaling had 
ended. Thus, in modern chips, power is the number one 
design concern, data movement dominates power 
dissipation, and wire delays have grown rapidly relative to 
logic gates.  

To provide optimized dataflows and generality, Smart 
Memories proposed what would now be called a CGRA 
(coarse grain reconfigurable array) with two unique 
features: 

 The ability to program/tailor the memory blocks as 
well as the processors 

 Intermixing DRAM tiles and compute tiles on the 
same die 

These capabilities resulted in a reconfigurable 
architecture that could be tailored to the application after 
manufacturing. The design eschewed the overheads 
typically associated with reconfiguration by inserting data 
steering logic at repeater breakpoints where gates were 
needed anyway for optimal interconnect performance.  

The key to programmable memories was that the vast 
majority of specialized memory systems used common 
SRAM sub-arrays arranged in different ways. As such, we 
showed how to insert reconfigurability/customization at 
sub-array boundaries, avoiding disruptive changes to the 
core SRAMs and, once again, minimizing the overheads 
customarily associated with reconfigurability. This 
programmable memory was built successfully a few years 
later [8][9]. Finally, we implemented configurability in the 
processor datapaths to enable computation to be configured 
to meet the needs of the target application.  

Work on the Smart Memory approach continued after 
this  initial ISCA paper, leading to the development of the  
Smart Memories chip multiprocessor (SMASH), and finally 

to a full system implementation [1]. While the original 
paper was very VLSI centric, exploring how to add 
configuration into the basic building blocks, continuing this 
approach for the whole system design was problematic for 
a small university design team. Development of a custom 
processor core and ISA required development of a complete 
set of software tools and infrastructure, and the configurable 
memory required creating a new memory compiler.  In 
addition, both new blocks would require creating extensive 
validation frameworks capable of handling the multitude of 
possible configurations. Instead, we chose to focus on the 
reconfigurable memory system architecture and used 
Tensilica processor cores, adding the needed functionality 
with custom instructions using the TIE language. This 
allowed us to add VLIW instruction formats and the 
mechanism to recover processor core state from mis-
speculation in transactional memory mode [2]. High-quality 
software tools and infrastructure provided by Tensilica 
allowed us to compile and run verification tests and 
benchmark applications and to compare different modes, 
implemented in Smart Memories architecture, e.g., cache 
coherent and streaming modes [3].  

For the reconfigurable memory system design the team 
leveraged the existing memory compiler from the foundry 
for the bulk of the SRAM data storage and synthesized the 
bespoke portions of the memory architecture using standard 
cells. Memory Mat metadata was stored in standard cell 
flip-flops, rather than the custom SRAM cells used in the 
initial reconfigurable memory testchip [8][9]. Although this 
increased the overhead significantly, it drastically decreased 
the needed engineering effort for the reconfigurable 
memory block. The resulting design still retained the 
original ideas of creating a programmable memory system, 
however the goals of this memory system changed. During 
the 2000’s, interest in transactional memory was growing, 
so demonstrating our programmable memories could 
support it became one of our goals. As validating the 
resulting programmable controller posed a complex 
difficult chalenge, we chose to reduce the problem to 
validating that the protocols implemented on the machine 
worked, which was still complex, but tractable. This led to 
a new validation approach, called a relaxed scoreboard [4], 
which enabled this validation. The resulting system was one 
of the first to support transactional memory. 

II. WHAT THE PAPER GOT RIGHT 

The paper correctly predicted the rising importance of 
energy efficiency, which is now critical in all systems, from 
small IoT embedded systems to powerful mobile platforms 



to big-iron datacenters. It also correctly foresaw the rise of 
spatially configurable computing (CGRAs) to more 
efficiently match an algorithm’s dataflow, distributing 
compute and memory around the die to enable one to store 
data closer to where it is needed.  Finally it was an earlier 
entry in the compute in/near memory paradigm, which 
continues to be of interest. 

While the specific programmable memories that were 
proposed in this paper were never built into a full system, 
the need for creating some programmability in the memory 
system has been validated in many systems.  For example, 
a common pool of memory that can be used as cache or 
scratchpad based on application needs is now a mainstream 
feature in GPUs [10]. Programmable memories are also 
used in most streaming accelerators. These machines 
generally use memories which push a data stream into a 
computing fabric and have another memory store the 
resulting output. In these systems, the addressing, flow 
control, and storage management is often “built in” to the 
memory, creating programmable memory units [11]. 

Notably today, machine learning accelerators, which are 
based on varying size Tensors, are a prime example of 
memories that are programmable and deeply embedded 
close to the computation. Since these memories are spatially 
arranged between arrays of compute units/ALUs, the 
memory structure itself is (re)programmed to serve as a 
virtual FIFO of the exact tensor dimensions [5-7]. The 
Neural Network graph compiler does the buffer properties 
assignment at the beginning of the computation. However, 
unlike Smart Memories, programmability here is typically 
limited to access patterns, rather than the consistency or 
coherence model. 

III. WHAT THE PAPER MISSED 

While the paper correctly pointed out the conflict 
between specialization and the need for a large market to 
amortize the high design costs, it failed to recognize an 
alternate approach to resolve this conflict by dramatically 
changing the way we design. If one could create a 
customized design for small design costs, the lack of 
generality would be less of a problem. This is important 
since all reconfigurable designs seem to have significant 
overheads. Fundamentally, the overhead of the 
reconfigurable design comes from either over-engineering 
it for yet to be known use cases (taking too long) or from 
mispredicting how use cases will evolve (missing a critical 
need). So, another approach to this conflict was to create 
tools which allowed designers to customize their designs 
from a more general chip generator. This approach was best 
exemplified by the Berkeley work on Chisel [12] and 
ChipYard. In fact, the Smart Memory design team took this 
approach to create the silicon we eventually taped-out [1].   
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