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 Context 

 This  paper  was  part  of  a  stream  of  work  in  the  area  of 
 soft  error  analysis  and  tolerance  techniques  done  by  two  of 
 the  co-authors  (Mukherjee  and  Reinhardt)  in  the  early 
 2000s.  This  effort  started  with  an  ISCA  2000  paper  on 
 redundant  multithreading  (RMT) [1]  followed  by  this  paper 
 two  years  later [2].  A  few  other  papers  were  published  with 
 additional  collaborators [3,4],  culminating  in  Mukherjee’s 
 book on the topic [5]. 

 The  original  impetus  for  this  collaboration  came  in  1998 
 after  Mukherjee  joined  the  Alpha  architecture  group  at 
 Compaq.  Compaq  had  already  bought  Tandem,  the  famed 
 manufacturer  of  fault-tolerant  computers,  the  prior  year.  At 
 that  time,  Tandem’s  primary  hardware  strategy  used 
 lockstepped  pairs  of  off-the-shelf  microprocessor  devices  to 
 detect  hardware  faults  in  the  CPUs.  With  both  Tandem  and 
 Alpha  under  the  Compaq  umbrella,  there  was  an  effort  to 
 use Alpha processors in this lockstepped configuration. 

 Unfortunately,  cycle-by-cycle  lockstepping  requires 
 deterministic  execution,  which  is  difficult  to  achieve  using 
 large  complex  devices  with  features  such  as  on-chip 
 ECC-protected  caches  that  occasionally  require  extra  cycles 
 for  error  correction.  In  addition,  lockstepping  has  an 
 inherently  high  resource  overhead.  Mukherjee  recognized 
 that  simultaneous  multithreading  (SMT) [O27,  O28],  1  a 
 then-new  technology  being  explored  by  the  Alpha  group  at 
 Compaq,  provided  an  opportunity  to  introduce  redundancy 
 without these drawbacks. 

 Meanwhile,  Reinhardt  was  an  assistant  professor  in  the 
 EECS  department  at  the  University  of  Michigan,  Ann 
 Arbor.  As  part  of  his  group’s  research  on  SMT  processor 
 design,  he  and  his  students  (primarily  Steve  Raasch)  had 
 added  SMT  support  to  the  SimpleScalar  simulator [6].  (This 
 work  was  a  precursor  to  M5 [7]  /  gem5 [8].)  Given  their 
 friendship  as  graduate  students  at  the  University  of 
 Wisconsin-Madison,  Mukherjee  approached  Reinhardt  to 
 leverage  the  latter’s  SMT  and  simulator  work,  and  together 

 1  [O  n  ] refers to reference [  n  ] in the original paper. 

 they  began  to  explore  and  define  the  concepts  underlying 
 RMT, leading to their initial publication [1]. 

 Mukherjee  and  Reinhardt  then  sought  to  push  RMT 
 towards  productization  within  Compaq.  The  next  logical 
 step  was  to  re-do  the  initial  investigation  in  the  context  of  a 
 real  industrial  SMT  processor  design,  in  this  case  the  Alpha 
 EV8  which  was  under  development  at  Compaq  at  that  time. 
 Reinhardt  began  consulting  for  Compaq  and  recruited  a 
 Michigan  graduate  student,  Michael  Kontz,  to  go  to 
 Compaq  and  work  with  Mukherjee  as  a  summer  intern. 
 This paper is the result of that internship. 

 Redundant Multithreading Concepts 

 Most  of  the  key  concepts  of  RMT  were  introduced  in 
 our  earlier  paper  [1].  2  RMT  runs  two  identical  instruction 
 streams  and  compares  the  outputs  of  these  streams  to  ensure 
 both  are  executing  correctly.  Because  an  RMT  processor 
 implemented  with  SMT  replicates  the  streams  logically, 
 rather  than  physically  as  in  lockstepping,  it  is  more  difficult 
 to  identify  which  hardware  structures  are  covered  by  the 
 replicated  instruction  streams  and  which  are  not.  The 
 concepts  we  developed  to  help  reason  about  these  issues  are 
 now widely used across academia and industry. 

 Sphere  of  Replication  .  The  sphere  of  replication 
 represents  a  logical  boundary.  All  activity  and  state  within 
 the  sphere  is  replicated,  in  time  and/or  in  space,  providing 
 fault  detection  coverage.  Values  that  cross  the  boundary  of 
 the  sphere  of  replication  are  the  outputs  and  inputs  that 
 require  comparison  and  replication,  respectively.  Structures 
 outside  the  sphere  do  not  gain  any  coverage  from  replication 
 and  must  employ  other  fault  coverage  techniques  (e.g.,  error 
 codes).  The  size  of  the  sphere  (how  much  is  replicated) 
 provides  a  trade-off  between  performance,  area,  and  fault 
 coverage. 

 Input  Replication  .  Input  replication  is  the  process  by 
 which  inputs  to  the  sphere  are  propagated  to  the  redundant 
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 execution  streams  in  such  a  way  that  the  replicated  streams 
 continue  to  execute  in  an  identical  fashion  (i.e.,  do  not 
 diverge).  Different  types  of  inputs  (e.g.,  cached  load  data, 
 uncached  load  data,  interrupts)  may  require  different 
 replication techniques. 

 Output  Comparison  .  Output  comparison  is  the  process 
 by  which  outputs  from  the  redundant  execution  streams 
 inside  the  sphere  are  compared  to  verify  their  correctness. 
 Equivalent  outputs  must  be  paired  for  comparison  before 
 they  propagate  outside  the  sphere,  where  unchecked  results 
 would  cause  potentially  erroneous  values  to  leak  into  the 
 rest  of  the  system.  Typically,  a  larger  sphere  requires  fewer 
 output  comparisons,  but  increases  the  latency  before  the 
 error is caught, which may complicate error recovery. 

 Contributions of This Paper 

 At  a  high  level,  this  paper  is  interesting  as  an  example  of 
 how  a  largely  academic  concept  and  evaluation [1] 
 translates  to  a  detailed  commercial  design.  While  the  EV8 
 was  sadly  never  produced,  with  or  without  RMT,  the 
 environment  in  which  this  work  was  performed  was  aimed 
 at  productization  and  staffed  not  by  academics  and  graduate 
 students  but  by  engineers  who  had  the  experience  of 
 multiple generations of successful products. 

 We  found  that  the  concepts  from  the  original  paper 
 carried  over  well,  but  many  of  the  details  had  to  be  adjusted 
 or  even  completely  redone  to  apply  in  a  different  and  more 
 detailed  base  design.  For  example,  our  original  work 
 assumed  a  FIFO  queue  for  load  value  replication,  but 
 maintaining  out-of-order  load  execution  in  the  trailing 
 thread  turned  out  to  be  important  for  performance,  so  this 
 structure  had  to  be  redesigned  to  support  multiple 
 associative  probes  using  a  correlation  tag.  At  the  extreme, 
 our  simple  concept  of  forwarding  branch  targets  between 
 threads  had  to  be  completely  redesigned  to  work  with  the 
 instruction  cache  line  prediction  scheme  that  drove  the  EV8 
 fetch  stage.  As  far  as  performance,  we  found  that  while  our 
 initial  study  indicated  that  a  unified  64-entry  store  queue 
 was  adequate  for  both  threads,  the  EV8  design  required 
 per-thread  store  queues  to  avoid  unacceptable  stalls.  Even 
 then,  the  simulated  overhead  of  running  a  redundant  thread 
 increased from 21% to 30%. 

 The  more  robust  EV8  modeling  infrastructure  also 
 allowed  us  to  expand  the  scope  of  our  studies.  Our  earlier 
 paper  looked  at  only  one  design  point,  a  single-core  SMT 
 processor  replicating  a  single  logical  execution  thread  using 
 two  hardware  thread  contexts,  a  design  we  termed 
 Simultaneous  Redundant  Threading  (SRT).  Here  we  also 
 looked  at  the  impact  of  running  two  logical  threads  on  four 
 hardware  contexts.  More  significantly,  we  also  looked  at  the 
 option  of  using  a  dual-core  chip  multiprocessor  (as  the  EV8 
 was  designed  to  be)  to  cross-couple  two  pairs  of  redundant 
 threads  across  cores,  an  option  we  termed  Chip-level 

 Redundant  Threading  (CRT).  This  paper  also  coined  the 
 term  RMT  as  an  umbrella  description  covering  all  these 
 techniques. 

 Impact and Future Directions 

 In  2001,  Intel  acquired  the  Alpha  architecture  division  of 
 Compaq.  Intel  sought  more  cost-effective  alternatives  for 
 soft  error  protection  for  the  Xeon  processor  line.  This  led  to 
 the  development  of  the  architecture  vulnerability  factor 
 (AVF)  methodology  [3,  4]  to  help  determine  the  relative 
 need for fault coverage across microarchitectural structures. 

 The  SRT/RMT  papers  along  with  the  AVF  work  inspired 
 some  follow-on  research.  Some  researchers  have  extended 
 RMT  to  include  fault  recovery  [O29].  RMT  can  be  exposed 
 to  software  control,  allowing  redundancy  to  be  switched  on 
 and  off  as  needed,  based  on  application  resiliency 
 requirements and/or AVF analysis [10]. 

 Although  we  are  not  aware  of  a  commercial  RMT 
 implementation  yet,  we  believe  that  the  flexibility  of  RMT 
 may  motivate  its  use  in  new  areas.  For  example,  the  need  to 
 meet  differing  reliability  standards  for  automotive 
 subsystems,  as  defined  by  ISO’s  ASIL  (Automotive  Safety 
 Integrity  Level)  standards,  might  benefit  from  the  lower 
 overhead and dynamically controllable nature of RMT. 
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