
 RETROSPECTIVE:
 Detailed Design and Evaluation of

 Redundant Multithreading Alternatives
 Shubhendu S. Mukherjee a , Michael Kontz b , and Steven K. Reinhardt c

 a SiFive, Inc. b Hewlett-Packard Enterprise c Microsoft

 Context

 This paper was part of a stream of work in the area of
 soft error analysis and tolerance techniques done by two of
 the co-authors (Mukherjee and Reinhardt) in the early
 2000s. This effort started with an ISCA 2000 paper on
 redundant multithreading (RMT) [1] followed by this paper
 two years later [2]. A few other papers were published with
 additional collaborators [3,4], culminating in Mukherjee’s
 book on the topic [5].

 The original impetus for this collaboration came in 1998
 after Mukherjee joined the Alpha architecture group at
 Compaq. Compaq had already bought Tandem, the famed
 manufacturer of fault-tolerant computers, the prior year. At
 that time, Tandem’s primary hardware strategy used
 lockstepped pairs of off-the-shelf microprocessor devices to
 detect hardware faults in the CPUs. With both Tandem and
 Alpha under the Compaq umbrella, there was an effort to
 use Alpha processors in this lockstepped configuration.

 Unfortunately, cycle-by-cycle lockstepping requires
 deterministic execution, which is difficult to achieve using
 large complex devices with features such as on-chip
 ECC-protected caches that occasionally require extra cycles
 for error correction. In addition, lockstepping has an
 inherently high resource overhead. Mukherjee recognized
 that simultaneous multithreading (SMT) [O27, O28], 1 a
 then-new technology being explored by the Alpha group at
 Compaq, provided an opportunity to introduce redundancy
 without these drawbacks.

 Meanwhile, Reinhardt was an assistant professor in the
 EECS department at the University of Michigan, Ann
 Arbor. As part of his group’s research on SMT processor
 design, he and his students (primarily Steve Raasch) had
 added SMT support to the SimpleScalar simulator [6]. (This
 work was a precursor to M5 [7] / gem5 [8].) Given their
 friendship as graduate students at the University of
 Wisconsin-Madison, Mukherjee approached Reinhardt to
 leverage the latter’s SMT and simulator work, and together

 1 [O n] refers to reference [n] in the original paper.

 they began to explore and define the concepts underlying
 RMT, leading to their initial publication [1].

 Mukherjee and Reinhardt then sought to push RMT
 towards productization within Compaq. The next logical
 step was to re-do the initial investigation in the context of a
 real industrial SMT processor design, in this case the Alpha
 EV8 which was under development at Compaq at that time.
 Reinhardt began consulting for Compaq and recruited a
 Michigan graduate student, Michael Kontz, to go to
 Compaq and work with Mukherjee as a summer intern.
 This paper is the result of that internship.

 Redundant Multithreading Concepts

 Most of the key concepts of RMT were introduced in
 our earlier paper [1]. 2 RMT runs two identical instruction
 streams and compares the outputs of these streams to ensure
 both are executing correctly. Because an RMT processor
 implemented with SMT replicates the streams logically,
 rather than physically as in lockstepping, it is more difficult
 to identify which hardware structures are covered by the
 replicated instruction streams and which are not. The
 concepts we developed to help reason about these issues are
 now widely used across academia and industry.

 Sphere of Replication . The sphere of replication
 represents a logical boundary. All activity and state within
 the sphere is replicated, in time and/or in space, providing
 fault detection coverage. Values that cross the boundary of
 the sphere of replication are the outputs and inputs that
 require comparison and replication, respectively. Structures
 outside the sphere do not gain any coverage from replication
 and must employ other fault coverage techniques (e.g., error
 codes). The size of the sphere (how much is replicated)
 provides a trade-off between performance, area, and fault
 coverage.

 Input Replication . Input replication is the process by
 which inputs to the sphere are propagated to the redundant

 2 That paper is among the 50 most cited ISCA papers from the
 first 50 years of ISCA [9].

 1

 execution streams in such a way that the replicated streams
 continue to execute in an identical fashion (i.e., do not
 diverge). Different types of inputs (e.g., cached load data,
 uncached load data, interrupts) may require different
 replication techniques.

 Output Comparison . Output comparison is the process
 by which outputs from the redundant execution streams
 inside the sphere are compared to verify their correctness.
 Equivalent outputs must be paired for comparison before
 they propagate outside the sphere, where unchecked results
 would cause potentially erroneous values to leak into the
 rest of the system. Typically, a larger sphere requires fewer
 output comparisons, but increases the latency before the
 error is caught, which may complicate error recovery.

 Contributions of This Paper

 At a high level, this paper is interesting as an example of
 how a largely academic concept and evaluation [1]
 translates to a detailed commercial design. While the EV8
 was sadly never produced, with or without RMT, the
 environment in which this work was performed was aimed
 at productization and staffed not by academics and graduate
 students but by engineers who had the experience of
 multiple generations of successful products.

 We found that the concepts from the original paper
 carried over well, but many of the details had to be adjusted
 or even completely redone to apply in a different and more
 detailed base design. For example, our original work
 assumed a FIFO queue for load value replication, but
 maintaining out-of-order load execution in the trailing
 thread turned out to be important for performance, so this
 structure had to be redesigned to support multiple
 associative probes using a correlation tag. At the extreme,
 our simple concept of forwarding branch targets between
 threads had to be completely redesigned to work with the
 instruction cache line prediction scheme that drove the EV8
 fetch stage. As far as performance, we found that while our
 initial study indicated that a unified 64-entry store queue
 was adequate for both threads, the EV8 design required
 per-thread store queues to avoid unacceptable stalls. Even
 then, the simulated overhead of running a redundant thread
 increased from 21% to 30%.

 The more robust EV8 modeling infrastructure also
 allowed us to expand the scope of our studies. Our earlier
 paper looked at only one design point, a single-core SMT
 processor replicating a single logical execution thread using
 two hardware thread contexts, a design we termed
 Simultaneous Redundant Threading (SRT). Here we also
 looked at the impact of running two logical threads on four
 hardware contexts. More significantly, we also looked at the
 option of using a dual-core chip multiprocessor (as the EV8
 was designed to be) to cross-couple two pairs of redundant
 threads across cores, an option we termed Chip-level

 Redundant Threading (CRT). This paper also coined the
 term RMT as an umbrella description covering all these
 techniques.

 Impact and Future Directions

 In 2001, Intel acquired the Alpha architecture division of
 Compaq. Intel sought more cost-effective alternatives for
 soft error protection for the Xeon processor line. This led to
 the development of the architecture vulnerability factor
 (AVF) methodology [3, 4] to help determine the relative
 need for fault coverage across microarchitectural structures.

 The SRT/RMT papers along with the AVF work inspired
 some follow-on research. Some researchers have extended
 RMT to include fault recovery [O29]. RMT can be exposed
 to software control, allowing redundancy to be switched on
 and off as needed, based on application resiliency
 requirements and/or AVF analysis [10].

 Although we are not aware of a commercial RMT
 implementation yet, we believe that the flexibility of RMT
 may motivate its use in new areas. For example, the need to
 meet differing reliability standards for automotive
 subsystems, as defined by ISO’s ASIL (Automotive Safety
 Integrity Level) standards, might benefit from the lower
 overhead and dynamically controllable nature of RMT.

 References

 [1] S. K. Reinhardt and S. S. Mukherjee, “Transient Fault Detection via
 Simultaneous Multithreading,” Proc. 27th Int’l Symp. on Computer
 Architecture (ISCA), June 2000.
 [2] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed Design and
 Implementation of Redundant Multithreading Alternatives,” Proc. 29th
 Int’l Symposium on Computer Architecture (ISCA), May 2002.
 [3] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
 “A Systematic Methodology to Compute the Architectural Vulnerability
 Factors for a High-Performance Microprocessor,” 36th Annual
 International Symposium on Microarchitecture (MICRO), December 2003.
 [4] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt, “Techniques
 to Reduce the Soft Error Rate of a High-Performance Microprocessor,”
 Proc. 31st Int’l Symposium on Computer Architecture (ISCA), June 2004.
 [5] S. S. Mukherjee, Architecture Design for Soft Errors . Morgan
 Kaufmann, 2008.
 [6] D. A. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version
 2.0,” Technical Report #1342, University of Wisconsin-Madison Computer
 Sciences Department, June 1997.
 [7] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi and
 S. K. Reinhardt, “The M5 Simulator: Modeling Networked Systems,” IEEE
 Micro , 26(4):52-60, July-Aug. 2006.
 [8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
 J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M.
 Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 Simulator,”
 ACM SIGARCH Computer Architecture News, 39(2), May 2011.
 [9] G. Upasani, M. Sinclair, A. Sampson, P. Ranganathan, D. Patterson, S.
 Shah, N. Parthasarathy, and R. Jain, “Fifty Years of ISCA: A data-driven
 retrospective on key trends,” arXiv:2306.03964, June 2023.
 [10] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, S. S.
 Mukherjee, “Software-Controlled Fault Tolerance,” ACM Transactions on
 Architecture and Code Optimization, 2(4):366–396, December 2005.

 2

