
RETROSPECTIVE:
BugNet: continuously recording program execution

for deterministic replay debugging
Satish Narayanasamy
University of Michigan

Gilles Pokam
Intel

Brad Calder
Google

I. CONTEXT

BugNet was published in ISCA 2005. When we started this
line of research in early to mid-2000, processor industry was
at an inflection point. Performance was no longer the only
consideration in processor design. Dennard scaling was break-
ing down, ushering in an era of multi-cores. The increasing
complexity of software (e.g., Windows XP had 40-50 million
lines of code) was already significantly straining programmer
productivity. With the advent of multi-core processors, there
arose an even more daunting challenge for most programmers:
learning parallel programming, a task that was typically left
to specialists. Consequently, there was a need within the
computer science community to improve debugging as we
transitioned to multi-core processors, given the programming
challenges they presented.

In this context, we asked ourselves: what can processors
do to help improve programmer productivity? Processors
had performance counters to analyze performance issues, but
lacked sufficient support for program correctness reasoning
and debugging, except for a limited number of watchpoint
and breakpoint registers.

Given that a significant fraction of a developer’s time is
spent on debugging, we then asked: what if we could reserve
a small memory space, and log some useful information during
a program’s execution that could later help programmers debug
in the event of a program failure? These questions led to
further investigation that resulted in BugNet.

II. BUGNET - A MINIMALIST DESIGN

The concept of time travel debugging (TTD) was known
then in the systems and software engineering community, but
no production software offered that feature. We defined a
variant of TTD which we referred to as Deterministic Replay
Debugging (DRD). DRD requires an ability to continuously
record all sources of non-determinism during a program’s exe-
cution, so that the execution can be deterministically replayed
to investigate a failure.

We can classify sources of an execution’s non-determinism
into two categories: input and races. While there were promis-
ing solutions for recording uniprocessor executions (e.g., Re-
Virt at Michigan), there were no feasible solutions for logging
all (synchronization and data) races, which is necessary to rea-

son about shared-memory multi-threaded program executions
on a multi-core processor.

As we investigated this problem further, we discovered
the work of Xu, Bodik and Hill [O24]1, who had just
published a paper named Flight Data Recorder (FDR) that
advocated for hardware-assisted multi-processor replay. FDR
sought to replay the full-system. Their approach requires about
six on-chip hardware buffers (one for every source of non-
determinism such as system input, DMA, interrupts, races,
etc.), mechanisms to transitively reduce coherence message
logs, and a hardware-assisted full-system checkpointing [O21].

In retrospective, what distinguishes BugNet from FDR and
many follow-up work on hardware-assisted replay including
ours [6], is its minimalist design. We realized that if the goal
is to help programmers debug their code, it is sufficient to
enable replay of just the user-code, without the need to do
full-system replay.

The revised problem statement led us to a fairly simple so-
lution: checkpoint registers (similar to what processors already
had for handling branch speculation), and then log a memory
location’s value when it is first read after the checkpoint.
BugNet efficiently determines a first read by tracking a meta-
data bit per L1 cache block. This bit is reset when the cache
block is fetched on a cache miss, and set after it is logged.
This solution allowed us to easily handle all sources of input
non-determinism by simply resetting these bits on a context
switch (including interrupts and systems calls). The end result
was a solution that was independent of operating system APIs
– an essential property for a hardware-assisted solution.

Another important property of this solution is that it guar-
anteed deterministic replay of each thread in a multi-threaded
program independently without recording its race logs. This
was a huge win as this meant we did not have to wrestle with
the coherence mechanism, which to this day is one of the most
complex mechanism within a modern processor.

When debugging multi-threaded programs, it remains cru-
cial to replay the synchronization and data races that occur
between threads. This problem, however, can be solved fairly
efficiently in software. To achieve this, we can record the
order of synchronization operations by instrumenting these
operations, which are relatively infrequent. In our software

1[O..] refers to bibliography in the original paper

1



implementation of BugNet [7], we discussed one solution that
involves logging a sequencer containing a global timestamp
whenever a thread performs a synchronization operation. Con-
sequently, we can replay the threads based on the observed
happens-before order due to synchronizations. To further rea-
son about data-races in a deterministically replayed execution,
we can explore complementary schedules [8] or employ an
SMT-based schedule constraint solver [4].

One of the less well-known results of BugNet is its attempt
at quantifying crash latency. For several software bugs we
studied, we showed that it is sufficient to replay a tenth of a
second that preceded the crash in order to debug it. This meant
that reserving a small amount of memory space, perhaps just
a fraction of an on-chip cache, is sufficient.

III. INFLUENCE ON INDUSTRY REPLAY TOOLS

After BugNet was published, Harish Patil (Intel) reached
out to us to understand if its replay solution can be realized in
software using Intel’s Pin dynamic instrumentation tool. Intel’s
challenge then was in studying user-level performance across
different OS platforms using their architectural simulators.
Cristiano Pereira joined this effort, and helped us realize Pin-
SEL [7]. PinSEL would later become PinPlay and additional
features for debugging such as DrDebug were added. PinPlay
continues to be used today. It was recently included as part of
Intel® Software Development Emulator (SDE).

Load-value logging, similar to BugNet, was also used in Mi-
crosoft’s iDNA record-and-replay solution [1]. Using iDNA,
Microsoft recently enabled time-travel debugging capability
within the widely used WinDbg. Microsoft has also built an
ecosystem of tools [2] to automatically find a wide range of
bugs in executions replayed using iDNA. This includes a data-
race analysis that we helped build as part of TruScan [8].

IV. EVOLUTION OF REPLAY RESEARCH

Since BugNet, there has been a notable surge in effort and
interest to advance record-and-replay solutions within systems,
hardware, and programming language communities.

Gilles Pokam joined Intel and led the implementation of
hardware-assisted replay. They created QuickRec [10], a pro-
totype built on Intel’s FPGA emulation platform, QuickIA.
QuickRec’s design deviated from BugNet as it utilized coher-
ence hardware to record memory races and modified the Linux
kernel to capture input non-determinism. However, QuickRec
presented challenges due to coherence tracking issues and the
significant overhead of logging input in the Linux kernel. In a
subsequent attempt, they developed LDC [9], a simpler design
based on BugNet, which has since influenced the development
of new data tracing features in Intel PT.

After joining Michigan, Satish Narayanasamy collaborated
with Pete Chen, Jason Flinn, and several students, including
Dongyoon Lee, to develop new software systems (Chimera [3],
Respec [5], DoublePlay [11]) that enabled deterministic
record-and-replay with less than 2x performance overhead.
This represented a significant improvement of an order of mag-
nitude compared to what was previously achievable without
hardware support.

V. LOOKING AHEAD

Time-travel debugging remains a potent tool. Alongside
iDNA/WinDbg and PinPlay, several other tools have emerged
that enable replay for web browsers, mobile applications, and
more. However, these production tools either lack support for
logging data races in multiprocessor executions or impose
excessive performance costs, as is the case with PinPlay.

Newer hardware features like Intel PT have witnessed
increasing adoption due to their ability to trace control flow.
Extending it with a BugNet-like feature, which essentially
involves logging L1 cache misses, may not entail all the
complexities endured by earlier efforts like QuickRec. Such
an extension can enable replay for multi-threaded programs
with negligible performance costs.

While there has been limited success in harnessing irregular
parallelism in traditional sequential applications, remarkable
achievements have been made in leveraging data parallelism
in modern workloads, such as machine learning. Tracing and
debugging machine learning tasks is a promising area for
future research, and the extent to which BugNet can contribute
to that ecosystem remains to be determined.

REFERENCES

[1] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray, M. Drinić,
D. Mihočka, and J. Chau, “Framework for instruction-level tracing and
analysis of program executions,” in The 2nd International Conference
on Virtual Execution Environments (VEE), 2006, p. 154–163.

[2] P. Godefroid, “Micro execution,” in 36th International Conference on
Software Engineering ICSE, 2014, pp. 539–549.

[3] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy, “Chimera: hybrid
program analysis for determinism,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2012.

[4] D. Lee, M. Said, S. Narayanasamy, Z. Yang, and C. Pereira, “Offline
symbolic analysis for multi-processor execution replay,” in 42st Annual
IEEE/ACM International Symposium on Microarchitecture, 2009.

[5] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen, and
J. Flinn, “Respec: efficient online multiprocessor replayvia speculation
and external determinism,” in International Conference on Architectural
Support for Programming Languages and Operating Systems, 2010.

[6] S. Narayanasamy, C. Pereira, and B. Calder, “Recording shared memory
dependencies using strata,” in International Conference on Architectural
Support for Programming Languages and Operating Systems, 2006.

[7] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder,
“Automatic logging of operating system effects to guide application-
level architecture simulation,” in Proceedings of the Joint International
Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS/Performance, 2006, pp. 216–227.

[8] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder,
“Automatically classifying benign and harmful data races using replay
analysis,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2007.

[9] C. Pereira, G. Pokam, S. Hu, and B. Strong, “Instruction, circuits, and
logic for data capture for software monitoring and debugging,” in US
Patent, 2016.

[10] G. Pokam, K. Danne, C. Pereira, R. Kassa, T. Kranich, S. Hu, J. E.
Gottschlich, N. Honarmand, N. Dautenhahn, S. T. King, and J. Torrellas,
“Quickrec: prototyping an intel architecture extension for record and
replay of multithreaded programs,” in The 40th Annual International
Symposium on Computer Architecture (ISCA), 2013, pp. 643–654.

[11] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy, “Doubleplay: parallelizing sequential logging and
replay,” in 16th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2011.

2

https://www.intel.com/content/www/us/en/developer/articles/tool/program-recordreplay-toolkit.html
https://www.elastic.co/security-labs/deep-dive-into-the-ttd-ecosystem
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-overview

	CONTEXT
	BugNet - A Minimalist Design
	Influence on Industry Replay Tools
	Evolution of Replay Research
	Looking Ahead
	References

