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I. SUMMARY

Byte-addressable nonvolatile memories can enable high
performance recoverable systems. These technologies pair the
high performance of DRAM with the durability of disk and
Flash memory, providing systems with memory performance
approaching that of DRAM, yet recoverability after failure.
However, ensuring proper recovery requires constraints on the
ordering of writes. In 2014, DRAM interconnects lacked the
interface to describe and enforce write ordering constraints;
ordering constraints that arise from memory consistency re-
quirements are usually enforced at the processor, which is
insufficient for failure tolerance with acceptable performance.

In our 2014 ISCA paper, we introduced Memory Per-
sistency, a framework motivated by memory consistency to
provide an interface for enforcing the order writes become
durable, an operation we refer to as a “persist.” Just as memory
consistency constrains the visible order of loads and stores
between processors, so memory persistency constrains the
order of persists with respect to one another and to loads and
stores. These constraints allow the programmer to reason about
the ordering of persists thereby guarantee correct recovery
from system failures. Both memory consistency and memory
persistency models define an interface and set of memory
order guarantees for the programmer while permitting different
implementations and optimizations. Both types of models
trade off increased concurrency and performance for increased
burden on the programmer to insert correct annotations.

Our work introduced the abstraction of a recovery observer
that atomically reads the entire persistent memory address
space at the moment of failure. Ordering constraints for
correct recovery thus become ordering constraints on memory
and persist operations as viewed from the recovery observer.
With this abstraction, we can apply the reasoning tools of
memory consistency to persistency—any two stores to the
persistent memory address space that are ordered with respect
to the recovery observer imply an ordering constraint on the
corresponding persists. Conversely, stores that are not ordered
with respect to the observer allow corresponding persists to
be reordered or performed in parallel.

In our ISCA 2014 paper, we define memory persistency,
describe the design space of memory persistency models, and
evaluate several persistency models. In particular, we introduce
the notion of strict persistency, where persistent memory order
is identical to volatile memory order, and relaxed persistency,
where these two orders are allowed to diverge. Relaxing persis-
tency allows systems with conservative consistency, such as se-
quential consistency, to improve persist concurrency. Layering

relaxed persistency on strict consistency allows programmers
to write synchronization code with the more intuitive interface
of strict consistency while still expressing high concurrency for
the much slower persist operations.

We describe memory persistency and follow-on research in
greater detail in A Primer on Memory Persistency [3].

II. HISTORICAL CONTEXT

Starting with the seminal work on sequential consistency by
Lamport in 1979 [6], a long sequence of computer architecture
and programming language research formalized the notion
of memory consistency models, to allow programmers to
reason about the correctness of multiprocessor programs in
light of the increasingly bewildering behaviors of processor
architectures with out-of-order execution and complex mem-
ory hierarchies, where loads and stores did not necessarily
propagate throughout the memory system in the order that a
program specified. Interestingly, hardware design, introducing
new mechanisms like speculative loads and post-retirement
store buffers, often preceded development of the theory of
how to correctly synchronize multiprocessor programs under
these mechanisms. For example, a sound specification of the
Intel x86 memory model [9] was not published until decades
after x86-based multiprocessors were commercially sold.

Similarly, clever device designers conceived ways to make
memory devices and arrays that, like DRAM, support a byte-
addressable load-store architecture, but retain their state when
supply voltage is removed. The first publication to examine
how such devices might be incorporated into computer ar-
chitectures was, to the best of our knowledge, the work of
Benjamin Lee and Microsoft co-authors at ISCA 2009 [7].
Lee surveyed a series of articles from the devices community
on phase change memory and evaluated what performance
characteristics might be achieved if these devices supplanted
DRAM-based main memory. They were bullish on the new
capabilities a persistent main memory might offer. They ob-
served, “Software cognizant of this newly provided persis-
tance can provide qualitatively new capabilities. For example,
system boot/hibernate will be perceived as instantaneous;
application checkpointing will be inexpensive; file systems
will provide stronger safety guarantees.”

Lee’s ISCA paper focused on a variety of technical chal-
lenges with phase change memory (PCM) technology that
needed to be addressed to deploy PCM-based memory devices,
but did not consider the system-level challenges that must be
addressed to make use of PCM’s durability. An overlapping
team of authors proposed to build a file system using byte-
addressable persistent memory at SOSP the same year [2].
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That work observed that file system correctness depends upon
the ordering of write operations, and yet existing processor
architectures lacked any mechanism to allow programmer
control of when data is evicted from caches and sent to
memory, short of marking an address region uncacheable.
They proposed to introducing a new abstraction called an
epoch barrier to divide programmer order into regions where
the persistent writes within a region are mutually unordered,
but all writes in one region must persist before any in a
subsequent region. This new epoch barrier is analagous to
fence instructions in many memory consistency models and,
in the terminology of our later work, the resulting persistency
model is called epoch persistency.

In reading these early works on persistent memory, our team
recognized that epoch persistency is only one of many possible
programming models for enforcing correct event order for
byte-addressable persistent memory. We recognized that a
more comprehensive theory might unlock additional design
points in the trade-off between simplicity of programming
and concurrency among slow, expensive persist operations.
Moreover, our team had spent many years studying speculative
implementations of memory consistency (e.g., Invisifence [1]).
The key insight of this line of research is that the ordering
rules of memory consistency models need only be obeyed if
there is a racing memory access from another processor that
can observe the misordering. In the immortal words of Bart
Simpson, “I didn’t do it. Nobody saw me do it. There’s no way
you can prove anything!” [4]. This insight lead us to conceive
the recovery observer as the basis to apply the collective
techniques of the memory consistency literature to this new
problem domain. We coined the term “memory persistency”
to suggest the similarities to memory consistency, but also to
emphasize that memory persistency gives rise to a new event
ordering that is distinct from visibility ordering governed by
consistency.

III. 9 YEARS LATER

A variety of follow-on research builds upon our theory of
memory persistency, proposing new models and implementa-
tions. We describe these in greater detail in our Primer [3].

In seeking to commercialize byte-addressable persistent
memory, Intel, too, recognized the need for architectural
extensions to describe persist ordering. Intel introduced the
pcommit instruction to enable this control. However, we and
others recognized that persistency model implied by pcommit
leads to inherently poor performance [5]. The instruction has
since been abandoned in favor of much simpler mechanisms
that guarantee in-flight writes will be flushed upon power
failure [8].

The most significant attempt to commercialize persistent
memory since these early publications is Intel’s OPTANE
product line, which introduced persistent memory in a form-
factor compatible with existing DRAM memory systems.
However, this product line was cancelled in July of 2022,
with a write-down of $559 million in unsold inventory. Intel’s
statements at the time indicate an anticipated shift to compute

express link (CXL)-based attachment of new memory technol-
ogy in future systems rather than a drop-in replacement for
DRAM. We look forward to this reintroduction of persistent
memory; examining the system-level challenges of optimizing
for this interface is a ripe area for additional research.

While we have limited visibility into why this particular
product line was not a commercial success, we can nonetheless
offer some observations on why it is challenging to introduce a
new persistent storage tier, especially in the current context of
global hyperscale cloud computing. To be considered safely
durable, it is not enough for data to be stored on media
that preserves state across power failures, data must also be
replicated to multiple distinct failure domains (i.e., different
systems/disks). Ideally, important data is replicated to geo-
graphically diverse data centers to prevent data loss even in the
case of disasters that bring an entire site offline. Once one must
incur the cost of replicating data over the network, the latency
and byte-addressability properties of persistent memory matter
less when weighed against the cost advantages of cheaper
storage media, like NAND Flash. We nevertheless hope that
continued research will uncover new opportunities for these
memory technologies in the consumer/portable device space
or in as yet unexplored system designs in the cloud.
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