
RETROSPECTIVE: Plasticine: A Reconfigurable
Architecture For Parallel Patterns
Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,

Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, Kunle Olukotun
Stanford University

I. MOTIVATION

Rapid advances in modern machine learning algorithms
have led to a surge in compute demand, sparking extensive
research in computer architecture focused on specialized, pro-
grammable accelerators. By leveraging GPUs as the comput-
ing substrate and utilizing high-level programming frameworks
such as PyTorch and Tensorflow, researchers can rapidly iterate
through various deep-learning model architectures. However,
hardware capabilities often limit the nature and scale of these
AI models. Programmable accelerators come in two broad
flavors: instruction-based and reconfigurable architectures.
Instruction-based accelerators offer ease of programming but
suffer from hardware overheads associated with instruction
and thread state management. Alternatively, reconfigurable
architectures, like FPGAs and CGRAs, avoid these overheads
but typically exhibit limitations in compute density and pro-
grammability due to their fine-grained and fully static nature.

Plasticine aimed to answer the following question: Can we
develop a hardware architecture that eliminates the perfor-
mance and hardware overheads of instructions and threads,
while circumventing the programmability challenges of FPGAs
and CGRAs?

II. THE PLASTICINE ARCHITECTURE

Plasticine is a Reconfigurable Dataflow Architecture (RDA)
with a programmable sea of compute and memory units in
a programmable interconnect. We chose to build a dataflow
architecture as it avoids the overheads of instruction and
thread management in hardware. To address programmability
concerns, the hardware primitives in Plasticine were built to
accelerate composable software primitives called parallel pat-
terns like map, zip, reduce, filter, and groupby. Prior research
had shown that parallel patterns can express a broad variety of
applications while capturing rich data locality and parallelism
information that aids compilation. As a result, Plasticine’s
primary objective was to be an efficient compiler target that
enables exploiting task, data, and nested pipelined parallelism
exposed by parallel pattern primitives.

Plasticine features a mesh topology where the vectorized
compute pipeline in the Pattern Compute Units (PCU) and
distributed scratchpads in the Pattern Memory Units (PMU)
are interconnected using programmable switches. Additionally,
Address Generation and Coalescing Units (AGCUs) bridge the
off-chip components and the I/O subsystem. The interconnect
is statically configured and includes physically distinct vector,

scalar, and control paths. The granularities of PCUs and PMUs
were empirically selected to maximize utilization across a
comprehensive set of representative benchmarks.

Plasticine exploits nested parallelism at multiple levels:
SIMD parallelism across PCU ALU stages, fine-grained
pipeline parallelism across PCUs, coarse-grained parallelism
between compute and memory access, and task parallelism
across kernels using dataflow-driven PCU and PMU groups.
The PCUs act as a logical pipeline stage and the PMUs hold
sharded and double-buffered logical tensors with software-
orchestrated flow control.

III. EVOLUTION AND IMPACT

Since its publication in 2017, Plasticine has gained signif-
icant adoption and received enhancements from the research
community, catering to a wider range of domains including
databases [4], [5] and unstructured sparsity [3]. Addition-
ally, research prototypes have been proposed to compile dis-
tributed [6] and imperative programs [7] on Plasticine.

Plasticine was commercialized as the SambaNova Systems
SN10 Reconfigurable Dataflow Unit (RDU) [1], [2] to acceler-
ate modern machine learning workloads. The SN10 RDU and
its subsequent generations have demonstrated the feasibility
of building and deploying RDUs at scale. The SambaFlow
software stack enables compiling and running Large Language
Models (LLMs) with trillions of parameters to achieve state-
of-the-art or higher performance and accuracy.

Going from an academic prototype to an industrial product
required us to add several features to improve performance and
to handle complex real-world cases. PCUs added a systolic
array to implement matrix multiply operations efficiently.
PMUs added data manipulation capabilities to perform tensor
transformations like transpose at full throughput. Data inter-
connect changed from fully static to packet-switched. Hard-
ware support was added to handle outof-order data streams
and unaligned memory accesses. We highlight observations
and lessons learned from the SN10 RDU design below.

• Software Ecosystem: A substantial software stack is re-
quired to enable PyTorch applications to run efficiently on
the SN10. Accurate cost models enable upper compiler
layers to efficiently explore the large design space with
operator fusion, tiling decisions, and parallelization. On-
chip buffer management optimized on-chip memory us-
age and prevented hangs. A dataflow programming model
allowed power programmers to build high-performance

1



operators without worrying about hardware specifics.
Bandwidth-aware place-and- route efficiently allocated
on-chip bandwidth to multiple data streams. Control
token-based instrumentation measured stage latencies to
help identify performance bottlenecks. Iterative co-design
helped strike the right balance between hardware and
software.

• On-chip Memory Capacity: RDUs packed 3-10x more
on-chip memory capacity compared to architectures with
similar compute capability partially due to reduced
instruction and thread management overhead. Conse-
quently, RDUs captured more temporal locality (larger
data tiles) and spatial locality (intermediate results be-
tween stages), drastically reducing off-chip bandwidth re-
quirements for high utilization. Specifically, RDUs could
achieve the same or higher compute utilization as GPUs
on large language models in spite of having 10x lesser
off-chip memory bandwidth.

• On-chip Memory Bandwidth: To sustain high utilization
for compute graphs parallelized within and across PCUs,
it is crucial to have (1) hardware that enables full through-
put vectorized memory access within a PMU and (2)
software that shards the logical tensor across distributed
PMUs. High address bandwidth motivated specialized
ALUs in PMUs for efficient address calculation. High
data bandwidth necessitated banked scratchpads. While
more banks reduced bank conflicts, it also decreased
effective memory capacity due to SRAM overheads.
Architectural support enabling software-controlled inter-
leaving across banks effectively reduced bank conflicts
without requiring a large number of memory banks.

• Kernel Fusion: Dataflow flexibility in RDUs enables
easier automatic kernel fusion. Specifically, fusion trans-
lated to a graph partitioning/clustering algorithm in the
compiler on the input compute graph, obviating the need
to build and maintain libraries of manually written fused
kernels. The flexibility to configure each PCU indepen-
dently, along with large address and data bandwidth in
PMUs helps sustain high utilization for fused subgraphs
requiring regular as well as irregular accesses.

• Specialize for Composability: Fundamental to dataflow
flexibility is architectural hooks that enable software
to compose larger logical units by combining smaller
units. For example, composing larger systolic arrays out
of many PCUs, or larger buffers out of many PMUs.
Composing units is rarely free, as they often introduce
additional many-to-1 data streams and a data reordering
mechanism, which impacts overall utilization. Specialized
hardware to handle common communication patterns that
arise out of composition can significantly mitigate the
negative impact on utilization.

• Programmability and Interconnect: A fully static in-
terconnect makes it difficult for software to achieve
high compute utilization for arbitrary compute graphs.
Packet-switch interconnects with end-to-end credited data
streams lowered the barrier for software to map arbitrary

graphs for utilization. Furthermore, hardware hooks to
configure bandwidth allocation between several concur-
rent streams allowed software to achieve better placement
and routing, which led to higher overall performance.

• Graph Setup Overheads: Greater RDU flexibility trans-
lates to added area overhead and configuration latency,
where the latter can quickly underwhelm the overall
performance improvement. Architectural mechanisms to
program units in parallel and minimize software driver
intervention was critical to mitigate these overheads.

IV. FUTURE

AI and ML constitute the most important workloads driving
computing in the world today. In the last decade, we have
witnessed the rise of a few dominant model architectures
like the Transformer and UNet, and an exponential increase
in model parameters and compute requirements. Given this
unsustainable trend, we are now at an inflection point. AI
researchers and practitioners alike are exploring alternative ar-
chitectures like Mixture-of-Experts and retriever-based models
that trade-off compute requirements for storage and memory
bandwidth. The dataflow paradigm in Plasticine and RDU
provides the flexibility to make such trade-offs programmat-
ically, thus making them well-positioned to handle future
computing workloads. Dataflow with high on-chip memory
capacity and bandwidth also enables new training methods
with sparse kernels that require operator fusion for higher
performance. Broader community adoption requires building a
mature software ecosystem with debuggers, profilers, and best
practices to extract the full potential of dataflow architectures.

REFERENCES

[1] R. Prabhakar and S. Jairath, “Sambanova sn10 rdu: Accelerating software
2.0 with dataflow,” in 2021 IEEE Hot Chips 33 Symposium (HCS), 2021,
pp. 1–37.

[2] R. Prabhakar, S. Jairath, and J. L. Shin, “Sambanova sn10 rdu: A
7nm dataflow architecture to accelerate software 2.0,” in 2022 IEEE
International Solid- State Circuits Conference (ISSCC), vol. 65, 2022,
pp. 350–352.

[3] A. Rucker, M. Vilim, T. Zhao, Y. Zhang, R. Prabhakar, and K. Oluko-
tun, “Capstan: A vector rda for sparsity,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’21. New York, NY, USA: Association for Computing Machinery, 2021,
p. 1022–1035.

[4] M. Vilim, A. Rucker, and K. Olukotun, “Aurochs: An architecture
for dataflow threads,” in Proceedings of the 48th Annual International
Symposium on Computer Architecture, ser. ISCA ’21. IEEE Press, 2021,
p. 402–415.

[5] M. Vilim, A. Rucker, Y. Zhang, S. Liu, and K. Olukotun, “Gorgon:
Accelerating machine learning from relational data,” in Proceedings
of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ser. ISCA ’20. IEEE Press, 2020, p. 309–321.

[6] Y. Zhang, A. Rucker, M. Vilim, R. Prabhakar, W. Hwang, and K. Oluko-
tun, “Scalable interconnects for reconfigurable spatial architectures,” in
Proceedings of the 46th International Symposium on Computer Architec-
ture, ser. ISCA ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 615–628.

[7] Y. Zhang, N. Zhang, T. Zhao, M. Vilim, M. Shahbaz, and K. Olukotun,
“Sara: Scaling a reconfigurable dataflow accelerator,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
2021, pp. 1041–1054.

2


