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I. HISTORICAL CONTEXT

Hardware specialization can improve performance and
energy efficiency by several orders of magnitude over con-
ventional CPUs [7]. However, the wide variety of cloud
applications, their rapid rate of change, and the need to support
multiple geographical regions and generations simultaneously
make scalable custom hardware for the cloud challenging.

The Catapult program began in 2010, one year after the
launch of Microsoft Bing and two years after the launch of
Red Dog, the predecessor to Azure. Bing approached Microsoft
Research (MSR) to find ways to give Bing a competitive edge.
Many at Microsoft and in the architecture research community
envisioned 1000 core ”manycore” multiprocessors as the future
for application acceleration, but our team looked to hardware
specialization as a better approach for Bing. The short timeline
of the request (as soon as possible) combined with the low
budget quickly ruled out custom hardware solutions. We looked
at both GPUs and FPGAs and decided that FPGAs could cover
a broader range of workloads, and the SIMD execution model
of GPUs did not match the latency-sensitive Bing workload
which made batching requests impractical. Accordingly, MSR
developed an accelerator platform based on FPGAs, with the
vision of eventually creating a fully-custom solution.

Under the codename Project Catapult, the 2014 paper focused
on the architecture and deployment of FPGA hardware in
Microsoft’s cloud and the hardware/software co-design that
doubled Bing’s ranking throughput and reduced latency by
30% at true production scale.

It is worth noting that the 1,632 servers in the paper was
not a random number. This was the smallest number number
of servers that could run one Bing instance. With workload
performance measured in 99%+ tail latencies and heavily
dependent on IO performance, engineering and deploying scale
systems is the only way to do realistic evaluations.

Supporting specialized hardware at scale was more challeng-
ing than initially envisioned. We went through three design
iterations. First, we designed a ”mega-board” with six large
FPGAs, four of which were placed in a special server per rack.
However, datacenters prefer homogeneous racks to simplify
power/cooling and to limit the blast radius of failures. In
addition, network designs that concentrate traffic at one node

result in severe network congestion and bad tail latencies, and
tail latencies are a more important metric for cloud workloads
like Bing than average performance.

Next, we designed the torus network described in the 2014
paper, whichenabled homogeneous racks, reduced the blast
radius of hardware failures, and alleviated network congestion.
However, commercial constraints changed just as quickly.
While our initial efforts had focused on Bing, Azure was
growing at 2x each year. At the time we wrote the 2014 paper,
we knew that we would have to shift to the bump-in-the-wire
topology introduced later in [1] to satisfy both Azure and Bing.

Since 2015 Microsoft has deployed specialized FPGA
hardware in nearly every cloud server. Catapult is the largest
public deployment of FPGAs in a reconfigurable computing
role. Many millions have been deployed across 6 continents
and 60+ regions. The FPGA has been used for compute
offload, networking and storage acceleration, AI offload, and
has evolved multiple times in each use case in a way that
could only be done in reprogrammable silicon. This paper
demonstrated that reconfigurable computing could have high
value at scale in datacenters and the cloud, which previously
had not been shown, and that subsequently the two main FPGA
companies (Altera and Xilinx), which had been independent
for decades, were acquired by the two largest datacenter CPU
vendors (Intel and AMD respectively).

II. APPLICATIONS SCOPE

The class of problems that benefit from hardware acceleration
is vast, as are the kinds of architectures that could address
certain applications. We have found FPGAs to be relevant to a
wider variety of domains and workload classes than any other
commercial cloud accelerator architecture, though they have
shortcomings in each space, especially compared to a dedicated
accelerator for only one application space.

For example, Catapult began as a general-purpose compute
accelerator platform well before the rush of architectural
specialization for AI, yet it still provided a competitive platform
for early AI workloads comprised of boosted decision tree
forests and DNNs like early CNNs [5] and LSTMs, and BERT-
style transformer models, though not LLMs. It also worked very
well as a platform for SmartNICs – specialized accelerators
for networking, storage, and security.
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Development in one application space benefits efforts in
other spaces. Infrastructure applications provide scale to keep
costs down and robustness to keep platforms highly-reliable.

To properly scope the impact of this work, we define three
inter-related but distinct forks:

• (1) Infrastructure & Data-Movement Acceleration
• (2) Application-specific Program Acceleration
• (3) AI Acceleration

A. Infrastructure & Data-Movement Acceleration

Azure SmartNIC [2] is largest use of FPGAs in Microsoft’s
datacenters. The FPGA is used to offload the software-defined
networking (SDN) stack, which virtualizes network traffic from
virtual machines. SDN functionality includes checking access
control lists, load balancing, network address translation, virtual
network support, metering, etc.

Since the initial deployment, the SDN Role (GFT) has
gone through three major rewrites, improving key performance
metrics like packets-per-second by over 4x, adding support
for encrypted VNETs and containers, enhanced packet capture
and filtering, and simultaneously reducing overall resource
utilization. In addition, storage offload capabilities in the form
of NVMe and data processing accelerators were recently added,
resulting in a 2.5x performance improvement in IOPS and
throughput [6] for best-in-class performance in the 100Gb
network generation.

B. Application-specific Acceleration

The Bing algorithm described in the original paper is a mix
of application-specific program acceleration in the form of
Feature Extraction (FE) and Free-Form Expression processing
(FFE), which then fed into an AI accelerator, the Decision Tree
Scorer (DTS). Between Pilot and Production, we had switched
from a dedicated torus network to converged Ethernet and had
cut all but the FE functionality.

There are numerous general-purpose use cases being inves-
tigated within Azure, but currentlys none of them are public.

C. AI Acceleration

While technically a subset of the above category, AI
accelerators have been the most visible category of cloud
accelerator architectures. Shortly after Bing went to production
with FPGAs, they shifted from boosted decision trees to
integrating DNNs into the ranking pipeline. While numerous
DNNs were trained and evaluated to significantly improve
search, most proposed DNNs could not deploy due to the
lack of available latency and CPU budget for each query.
The existing fleet of deployed FPGAs and the hardware
microservices platform leveraging our custom FPGA-resident
LTL (Lightweight Transport Layer) transport protocol provided
a solution. The Brainwave framework [3] was deployed side-
by-side with FE to great effect. The network allowed every
CPU to remotely leverage multiple distinct accelerators for
each query, using a shared pool of FPGAs. Brainwave’s latency
at the required batch size of one was significantly better than
other available hardware, including the latest CPUs and GPUs.

Recently, the size, compute requirements, and ubiquity of
the largest models make using FPGAs for AI less competitive.
Workload stability and market size have allowed GPUs to
flourish. While FPGAs could play a role in lightweight model
inference where the largest ML models are unnecessary [4],
we do not foresee a broader role for AI computation on FPGA
while model sizes continue to grow. However, the role of
application-specific algorithms like FE and LCS which prepare
data to feed into AI engines remains relevant.

The fact that the same FPGAs hardware remained com-
petitive from decision tree forests through a multiple DNNs
demonstrated the platform’s adaptability at scale. With less
focus on AI, we envision more opportunity to focus advancing
other categories of applications, particularly specialized pro-
gram acceleration, where other commercial accelerators have
not gained a significant foothold in the cloud.

III. ADDITIONAL LESSONS

Overall, Microsoft continues to benefit from the flexibility
FPGAs enabled in the fleet. We ’ve rolled new features to
large fractions of the fleet across multiple generations of
FPGAs. While some features would emerge with software-
programmable architectures, others (e.g. NVMe virtualization
or DNN acceleration) would overwhelm core-based architec-
tures. We’ve been successful at supporting increased server
lifetimes, which has a positive impact on cost and sustainability.

One additional advantage of the FPGA approach is the
impact FPGA accelerator development has on the quality of
the pure software solution. During the first Bing development,
the initial 625x improvement in DTS quickly reduced to 32x
with software optimization before settling at 125x for just
that portion. The software optimizations reduced the portion
of time DTS took as part of the overall Bing stack, and
Amdahl’s Law necessitated finding new portions of Bing’s
ranking algorithm to justify deployment. As we found new
portions of Bing to offload, pure software could be improved
in similar ways. Hardware that enables software developers to
do A/B comparisons in production helps software engineers
identify true bottlenecks and think of new ways to overcome
existing obstacles.

IV. LOOKING FORWARD

The evolution of cloud workloads is hard to predict, and
changing commercial constraints make it even more difficult
to know how to push specialization into the datacenter. 6+
year deployment lifetimes and supporting 4+ generations of
specialized hardware simultaneously makes finding lasting
solutions even more difficult.

While we have been successful at deploying and utilizing
FPGAs at scale for a wide variety of use cases, on-boarding
new applications is still dificult. We conjecture that generative
AI can be applied to development, making programable
accelerators more viable to deploy in cloud infrastructures,
making reconfigurable computing (perhaps in more forms)
even more important than they are today, but also for new
“general for a domain” classes of accelerators to emerge.

2



REFERENCES

[1] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2016, pp. 1–13.

[2] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K.
Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,
G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,
D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg, “Azure Accelerated
Networking: SmartNICs in the Public Cloud,” in NSDI, 2018.

[3] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek,
G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S.
Chung, and D. Burger, “A configurable cloud-scale dnn processor for
real-time ai,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), 2018, pp. 1–14.

[4] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang, “Applied machine learning
at facebook: A datacenter infrastructure perspective,” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2018, pp. 620–629.

[5] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S.
Chung, “Accelerating deep convolutional neural networks using specialized
hardware,” 2015.

[6] P. Shan, “Increased remote storage performance with nvme-enabled ebsv5
vms now generally available,” Azure Compute Blog, May 2023.

[7] N. Zhang and B. Brodersen, “The cost of flexibility in systems on a
chip design for signal processing applications,” University of California,
Berkeley, Tech. Rep, 2002.

3


