
RETROSPECTIVE: New Attacks and Defense for
Encrypted-Address Cache

Moinuddin Qureshi (Georgia Tech)

This ISCA-2019 paper was a follow-up to our prior
MICRO-2018 paper (CEASER), which proposed a low-cost
randomized cache design using encrypted-address. This paper
proposed faster eviction-set algorithms, which broke prior
secure caches, and a robust randomized cache (CEASER-S).
This paper represented a significant jump in both attacks and
defense for randomized caches. Personally, this was truly a fun
paper, where for several months, I had posed the problem of
eviction-set generation as a ”spy” problem to dozens of people,
to see if they could come up with an even better solution.
The second attack that exploits the replacement policy was
discovered accidentally while making the conference slides for
MICRO-2018. Finally, the solution was a simple combination
of CEASER with Seznec’s brilliant idea of skewing. We hope
to share the backstory, the context, and the impact of the paper.

I. THE BACKDROP

While my group had previously done work on improving
the performance of secure memory designs (e.g. SYNERGY
at HPCA-2018), coming up with new secure architectures was
not really a focus of our group. In Jan 2018, we became aware
of the Spectre/Meltdown attacks, which greatly increased our
interest in security. One of the initial secure processor designs
that we were exploring (with a student in my graduate class)
was to invalidate lines that were brought on the wrong path.
My PhD student, Gururaj Saileshwar (who was also then
the TA for my class) had correctly determined that such a
design would not be secure as an adversary can simply do
Prime+Probe to learn which set was invalidated. We realized
that Prime+Probe could be defeated with a randomized cache.
Unfortunately, the randomized cache designs at that time
(based on the indirection table) were designed for L1 cache,
and scaling them to LLC would cause unacceptable storage
overheads. Furthermore, they relied on OS support to protect
the indirection table. Ideally, we wanted a randomized cache
design without relying on any indirection table or OS support.

II. CEASER: RANDOMIZATION VIA ENCRYPTION

About a decade earlier, while at IBM, I had worked on a
similar problem of avoiding indirection tables in the context of
wear-leveling. At MICRO-2009 we had presented Randomized
Start-Gap, an algorithmic wear leveling design (with block
cipher for randomization) that eliminated indirection tables for
wear leveling. The insights for our randomized cache were
inspired by Start-Gap. Unfortunately, this insight came only
a month before the MICRO submission deadline, and at that
time all my graduate students were busy as each was leading a

submission to MICRO-2018, so they were unavailable to work
on secure caches. Rather than postponing this work to HPCA,
I decided to use the week of the upcoming spring break to
work on the paper, and the result was CEASER.

CEASER had two main ideas. First, using encrypted line-
address (using a block cipher) to break the line-to-set map-
ping. Second, remapping, whereby the line-to-set mapping
changes dynamically (by changing the key of the block-
cipher). CEASER required negligible storage and performance
overheads. To evaluate the security properties of CEASER,
we had use the state-of-the-art eviction set algorithm [1] at
that time, which required O(L2) accesses, which meant even
with a remapping rate of 1% (one line move per 100 accesses
the cache) CEASER could provide years of security. Thus,
CEASER was a practical design for securing large caches.

III. TOWARDS FASTER EVICTION-SET GENERATION

The security of CEASER relies on the ability of the attacker
to form an eviction sets (a group of lines that map to the
same set so as to cause an eviction from that set). The best-
known algorithm [1] at that time had three steps: (1) Launch
L random lines at the cache and access them again, redo L
until you get at-least one miss, (2) Converge on the eviction
set by removing one line and testing the remaining lines to
see if there is still a conflict miss, if so discard the removed
line, else retain the removed line. Repeat until you are left
with only conflicting lines (3) Use the eviction set to perform
an attack. This algorithm has quadratic complexity.

The insight to form faster eviction came on the day after
submitting the camera-ready version of CEASER, and it
happened with the simple thought experiment: what would
happen if we removed 2 lines (a group) from ”L” instead
of a single line? We would get almost 2x faster attack, as
very few lines tend to map to the same set. For this new
attack (called Group Elimination Method or GEM), the main
question was what should be the size of the group. After some
experimentation and analysis, we had concluded that it is best
to have W+1 equal-sized groups for a W way cache (so each
group would have L/(W+1) lines).

It was unclear at that time if this group size was the best
or if there are even faster search methods to converge on the
conflicting lines. To help with finding the best algorithm, I
had created a spy-problem and shared it with a dozen friends
and students, and posted it on a popular puzzle website [3].
While we received a lot of creative solutions, none of them
was faster than the solution that we already had. Soon, we
discovered that the search algorithm was unnecessary.

1



IV. FROM FAST SEARCH TO NO SEARCH

The classical search-based identification of conflicting lines
relies on the assumption that you do not know the replacement
policy of the cache. Turns out that replacement policy plays
a critical role. This became clear while I was making the
conference presentation for CEASER (MICRO-2018). I had
an animation to explain the existing eviction set algorithm.
It had an access pattern with 5 lines (ABCDE) out of which
three lines (ACE) conflicted on the same set. Once a LRU-
managed cache is accessed with ABCDE and then again with
ABCDE, you get misses for all the conflicting lines (ACE),
due to the thrashing property of LRU. Then, there is no need
for a search algorithm. Thus, accidentally, we discovered a
second, much faster attack, that did not require any search
algorithm and reduced the complexity from L2 of prior work
and L.W for GEM to 2L. We generalized this line of attack
to other replacement policies (such as RRIP and Random) as
well. Our attack, that exploits the property of the replacement
policy, is currently the fastest known eviction set algorithm.

V. THE IMPACT OF FASTER ATTACKS

The security of CEASER (or in general any encrypted
address cache) relies on the ability of the attacker to form an
eviction set. With an eviction set algorithm that had quadratic
complexity, a low rate of remapping (say 1%) was sufficient
to ensure security. However, when the complexity reduces to
linear, the remapping rate must be increased significantly, to
more than 100% (one or more lines moved every access to the
cache). This rate of remapping would incur significant perfor-
mance overheads. Thus, these new attacks render CEASER
unusable in practical systems. Other options, such as table-
based schemes, while secure, would incur prohibitive storage
and performance overheads (while also needing OS support).

VI. THE CEASER-S DEFENSE: COMBINE NEW WITH OLD

To develop a robust design for a randomized cache, our key
insight was to allow flexibility for the given line to be present
in multiple sets. This would make it hard for the adversary
to form an eviction set for two reasons: First, the eviction set
would need to be for all possible places where the line could
reside. Second, the lines that form the eviction set also get
scattered to multiple possible locations.

Andre Seznec’s classic paper from ISCA-93 [5] introduced
the skewed-cache design that uses a different hash function
for each way, thus allowing a cache line to be mapped to
a different set in each way. Our proposed design, CEASER-
S (S for Skewed), combined CEASER and Skewed-Cache.
CEASER-S splits a 16-way cache into two halves of 8-
way, and each half performs CEASER independently (with a
different set of keys for the cipher). Thus, CEASER-S not only
randomized the line-to-set mapping (using a block cipher) but
also the line-to-skew mapping by selecting the skew randomly
when the cache line is installed in the cache.

CEASER-S required negligible storage and performance
overheads. Given the two dimensions of randomization,
CEASER-S could thwart even our new faster attacks on

eviction set generations, as it becomes extremely hard for
an adversary to converge on a small set of lines that are
guaranteed to dislodge the given line from all the skews.

VII. THE INITIAL RECEPTION AND IMPACT

This paper appeared in June 2019, at a time when similar
efforts were being pursued in the security community. An
Oakland paper [6], which appeared in May 2019, looked
at faster eviction set generation using group testing, which
was similar to our first attack. However, our second attack
(exploiting the replacement policy) continues to be the current
fastest method to converge on an eviction set. CEASER-S
uses skewed cache for randomizing the location. A USENIX-
Security paper, that appeared in Aug 2019, proposed Scatter-
Cache [7], which also uses block-ciphers as hash-functions
to skewed cache. However, CEASER-S additionally changes
the line-to-set mapping continuously thus offering stronger
security. Thus, ideas similar to the ones proposed in our ISCA-
2019 paper were being argued for, independently, within the
security community, providing even greater validation to the
insights and applicability of our design. Later studies have
also looked at changing the remapping rate of CEASER-S
dynamically based on the cache access pattern.

VIII. ENDING THE ARMS RACE

Newer attacks motivate strong defenses, and strong defenses
motivate better attacks. As guaranteed eviction of a line is
hard to do in CEASER-S and ScatterCache, future attacks [2]
started exploring probabilistic eviction set generation, whereby
a set of lines are identified that can dislodge the given target
line with a non-negligible probability. Skewed designs (or in
general any design that is not fully associative) would be
vulnerable to such probabilistic attacks. For almost two years,
there was an arms race between randomized cache designs and
intelligent eviction set algorithms. To put an end to the arms
race between the cache attacks and randomized caches, we
developed a practical fully associative cache, MIRAGE [4],
which uses tag-to-data indirection and power-of-two choice
load balancing between two skews to virtually eliminate
set conflicts, and thus conflict based cache attacks. So far,
MIRAGE has remained undefeated for the past two years.

One of the main learning from doing research in random-
ized cache is that it is important to think about principled
security properties first (e.g. fully associative cache) and then
implement the design, rather than the other way around.

REFERENCES

[1] F. Liu et al., “Last-level cache side-channel attacks are practical,” in
Security and Privacy (SP),, 2015.

[2] A. Purnal et al., “Advanced profiling for probabilistic prime+ probe
attacks and covert channels in scattercache,” arXiv:1908.03383, 2019.

[3] M. Qureshi, “The spy problem.” [URL]: https://fivethirtyeight.com/
features/how-much-will-it-cost-to-sniff-out-the-spies/

[4] G. Saileshwar et al., “MIRAGE: Mitigating Conflict-Based cache attacks
with a practical Fully-Associative design,” in USENIX Sec, 2021.

[5] A. Seznec, “A case for two-way skewed-associative caches.”
[6] P. Vila et al., “Theory and practice of finding eviction sets,” in Security

and Privacy (SP), 2019.
[7] M. Werner et al., “ScatterCache: Thwarting cache attacks via cache set

randomization,” in USENIX Security, 2019.

2

https://fivethirtyeight.com/features/how-much-will-it-cost-to-sniff-out-the-spies/
https://fivethirtyeight.com/features/how-much-will-it-cost-to-sniff-out-the-spies/

	The Backdrop
	CEASER: Randomization via Encryption
	Towards Faster Eviction-Set Generation
	From Fast Search to No Search
	The Impact of Faster Attacks
	The CEASER-S Defense: Combine New with Old
	The Initial Reception and Impact
	Ending the Arms Race
	References

