
RETROSPECTIVE: Self-optimizing Memory
Controllers: A Reinforcement Learning Approach

José F. Martı́nez
Cornell University
Ithaca, NY USA

martinez@cornell.edu

Engin Ipek
Qualcomm

San Diego, CA
eipek@qti.qualcomm.com

Onur Mutlu
ETH Zurich

Zurich, Switzerland
onur.mutlu@inf.ethz.ch

Rich Caruana
Microsoft Research

Redmond, WA USA
rcaruana@microsoft.com

I. THE PATH TO REINFORCEMENT LEARNING

Around the time we began working on this idea, the
computer architecture community was not particularly familiar
with machine learning (ML), and solutions to both offline (i.e.,
design- or compile-time) and online (i.e., run-time) problems
were largely based on ad hoc heuristics. Some proposals did
employ ML offline, including genetic algorithms for automatic
derivation of branch predictor designs [O-14] or artificial
neural networks (ANNs) for static branch prediction [O-7].1
But when it came to online heuristics, ML-based solutions
were virtually inexistent, with a notable exception in Jiménez
and Lin’s perceptron-based branch predictor design [O-19].
A perceptron is essentially a very simple ANN, and thus a
form supervised learning, a.k.a. “learning with a teacher.”
Supervised learning matches the branch prediction problem
very well, as the outcome of every branch can be used to train
the perceptron on what its prediction should have been for
that branch. Jiménez and Lin’s work was elegant and showed
that the perception could outperform the best-known ad hoc
heuristics for that problem.

At Cornell University, Engin Ipek had taken Rich Caruana’s
course in ML and had become enamored with the technol-
ogy and its possibilities. With collaborators Sally McKee,
Bronis de Supinski, and Martin Schulz, Engin and Rich had
successfully devised an offline methodology to dramatically
cut down the exploration of a microprocessor’s design space,
using ANNs to pick what configurations to simulate [5]. José
Martı́nez was impressed by this work; however, he was more
excited about the potential of inserting an ML engine right
into the hardware that could beat the best-known online ad
hoc heuristics for key architectural mechanisms, as Jiménez
and Lin had done for branch prediction.

Engin and José had been working together on the Core
Fusion project [4] and wrestled with a problem that looked
nothing like branch prediction: instruction steering. Instruction
steering is a problem typical of clustered microarchitectures
in general, and Core Fusion in particular: given a group of
consecutively fetched instructions, which ones should be sent
for execution to what core? Unlike branch prediction, steering
decisions don’t have an obvious “correct answer,” even a
posteriori, so supervised learning did not seem like a good
fit. It is, in fact, a fairly complex problem because 1) each
decision needs to balance multiple constraints (e.g., try to
steer producers and consumers to the same core but, at the
same time, try to balance the load across cores), and 2) the
optimality of a decision depends in part on future unknowns
(e.g., will an instruction have many data dependencies with
others yet to be fetched, and if so, will we come to regret

1Citations with an O- prefix refer to those in the original paper.

a decision based solely on current knowledge?). A number
of key architecture problems share these two characteristics;
instruction scheduling in superscalar processors is another
example.

Engin, José, and Rich began to look for ML mechanisms
that would be a good fit for instruction steering and scheduling,
and soon enough they found promise in reinforcement learning
(RL) [O-42]. An RL agent has an a priori understanding
of how nominally “good” an action can be. This a priori
knowledge is often hardwired into the RL agent (e.g., based on
a computer architect’s intuition). For example, in instruction
scheduling, filling an issue slot is nominally “good,” while
leaving it unassigned is “bad”—at least in principle. However,
when making a decision, RL looks at the system’s current state
and picks among a set of available actions not based on the
perceived immediate reward, but on the estimated long-term
effect of taking such an action. This was, fundamentally, an
exciting twist: don’t be preoccupied with what action seems
“best” at each point in time; instead, keep your eyes on the
ultimate prize—in our case, minimizing execution time. As
the system evolves, based in part on the actions already taken,
an RL agent has the capacity to progressively refine its ability
to estimate the long-term effect of a particular action in a state
similar enough to one visited before. This is called “learning
through interaction.”

RL based on Q values, in particular, was particularly at-
tractive because it seemed readily implementable in silicon. A
Q-value matrix is essentially a multidimensional table that is
indexed periodically to 1) read the current best estimation of
the long-term effect of taking a particular action in a particular
system state, and 2) update the Q-value matrix using newly
acquired hindsight as the system evolves. This sounded a lot
like something that could be folded into good ol’ RAM!

II. A SOLUTION IN SEARCH OF A PROBLEM

Designing an RL agent for instruction steering and schedul-
ing turned out to be easier said than done, however. A particu-
larly tough challenge was the fact that these operations were on
the critical path of a microprocessor’s datapath, and designing
an RL mechanism that would access a Q-value matrix multiple
times, once per possible action, before deciding which action
to perform, was likely to take a handful of precious CPU
cycles. José asked Engin: where else in a computer system
could one find a scheduling problem that, on the one hand,
had real impact on execution time, but on the other hand, had
built-in slack to insert something as sophisticated as an RL
agent? A few days later, Engin came up with something that
seemed to have great potential: a memory controller.

A primary function of memory controllers is to schedule
memory requests in a way that minimizes execution time. The



memory controller had long moved on-chip and was therefore
clocked at CPU speed. DDR2 DRAM, on the other hand,
was clocked at a fraction of that speed. This meant that,
for each memory scheduling decision, an RL-based memory
controller would have multiple CPU cycles to ponder options.
The “golden standard” of memory scheduling was arguably
FR-FCFS by Rixner et al. [O-37], and it was a perfect example
of a great design that was heavily reliant on expert intuition
and without the capacity to improve at run-time. The stage
was set, then: The goal would be to beat FR-FCFS by taking
a fundamentally different approach based on RL.

III. DESIGNING THE RL-BASED MEMORY SCHEDULER

Engin, José, and Rich (well, mostly Engin) began to dissect
the problem into the standard RL components: actions, im-
mediate rewards, and state attributes. Actions were dictated
by what a memory controller could do (e.g., issue a read
command or activate a row), so there wasn’t much to decide
there. For immediate rewards, our first try turned out to be
quite good: +1 if an action was actually reading or writing
data, 0 otherwise. (Janani Mukundan and José would conclude
later that better immediate reward values could be obtained
offline using genetic algorithms [8].) State attributes were
tricky: it was important to sense the ones that best informed
the RL agent, and it couldn’t be too many, as the number
had a direct bearing on the size and effectiveness of the
Q-value matrix—a problem known in the ML community
as the “curse of dimensionality,” which in our case would
materialize in the form of more silicon area and longer access
times. Engin decided to take a systematic approach, using
linear feature selection to narrow down a list of more than
200 attributes that could intuitively be connected to memory
scheduling decisions. Importantly, he included attributes that
were observable on chip but not necessarily in the memory
controller itself (e.g., relative ROB order of memory requests).
In fact, among the final six attributes, two of them would be
of this kind, so the final design included a description of how
one would bus this information along with a memory request.

With the basic design out of the way, we still had to find
a way to fit the scheduler’s decision-making process into the
number of CPU cycles that constituted a single memory cycle
for DDR2-800 DRAM and, of course, evaluate the design in
a detailed simulator. Around that time, José visited Microsoft
Research and met Onur Mutlu, who had a long record of
publishing on architectures for memory subsystems and specif-
ically on memory controller design. Shortly afterward, Engin
joined Microsoft Research for a co-op under Onur, and it was
during that time that the paper really came together. Already
convinced that memory controllers need to become more
intelligent and having implemented perceptron-based branch
predictors himself, Onur bought into the idea immediately,
and the whole team spent several months nailing down the
design, implementation, detailed experiments, comparisons,
and results analyses.

IV. THE REVIEWERS CHIME IN

The paper was first submitted to MICRO in 2007. Reviewers
rejected it, in the process posing several probing questions that
would eventually make the final evaluation much stronger. Two
really intriguing ones were: 1) Could the baseline FR-FCFS
design have benefited from factoring in some of the additional
attributes that feature selection found? 2) Could an offline RL-
based design (i.e., one where the Q-value matrix is frozen
after offline training through simulation and then installed in

the final design) match your results? We carried out additional
experiments to try these scenarios and were able to show that
an online RL approach was still significantly superior to those
two. The paper was highly reviewed and accepted to ISCA
2008.

V. THE AFTERMATH

Shortly after publishing the paper, RL pioneer Andrew
Barto (UMass-Amherst) and co-author of the seminal book
on RL [O-42] with Richard Sutton (U. of Alberta) reached
out to us, as he had come across the work and thought was
fascinating. The first edition of Sutton & Barto was a frequent
source of inspiration and knowledge during our work, so
we were incredibly flattered by this! Eventually, as Andrew
and Richard were preparing the second edition of their book,
Andrew reached out again to tell us that they had decided to
include our work as one of eight case studies of successful uses
of RL alongside projects like Google’s AlphaGo and Watson’s
Jeopardy!

The design inspired follow-up work by us and many others:
at the time of this writing, this paper has been cited over six
hundred times. We believe this is in part because the problem
was important and the ML-based approach inspiring, and in
part because ML over the last ten years has become a major
source of interest in computer architecture and beyond. As for
the particular implementation itself, it is probably fair to say
that it did not age well, as DRAM standards continued to crank
up the clock while CPU frequency mostly stagnated, which
essentially squeezed the clock margin that the original design
enjoyed [3], [10]. However, we believe the fundamentals of
the RL-based design can be applied and extended to the faster
memory controllers of today and the future, and to other
computer architecture problems as well [1], [2], [6], [7], [9],
[11].

REFERENCES

[1] Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori, Taha
Shahroodi, Sreenivas Subramoney, and Onur Mutlu. Pythia: A Customiz-
able Hardware Prefetching Framework Using Online Reinforcement
Learning. In Intl. Symp. on Microarchitecture (MICRO), 2021

[2] Zhuo Chen and Diana Marculescu. Distributed reinforcement learning
for power limited many-core system performance optimization. In De-
sign, Automation & Test in Europe Conf. (DATE), 2015

[3] Saugata Ghose, Hyodong Lee, and José F. Martı́nez. Improving memory
scheduling via processor-side load criticality information. In Intl. Symp.
on Computer Architecture (ISCA), June 2013

[4] Engin İpek, Meyrem Kırman, Nevin Kırman, and José F. Martı́nez. Core
Fusion: Accommodating software diversity in chip multiprocessors. In
Intl. Symp. on Computer Architecture (ISCA), 2007

[5] Engin İpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski,
and Martin Schulz. Efficiently exploring architectural design spaces
Via predictive modeling. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2006

[6] Wonkyung Kang and Sungjoo Yoo. Dynamic management of key states
for reinforcement learning-assisted garbage collection to reduce long tail
latency in SSD. In Design Automation Conference (DAC), 2018

[7] Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. ConfuciuX: Au-
tonomous hardware resource assign- ment for DNN accelerators using
reinforcement learning. In Intl. Symp. on Microarchitecture (MICRO),
2020

[8] Janani Mukundan and José F. Martı́nez. MORSE: Multi-objective re-
configurable self-optimizing memory scheduler. In Intl. Symp. on High-
Performance Computer Architecture (HPCA), 2012

[9] Leeor Peled, Shie Mannor, Uri Weiser, and Yoav Etsion. Semantic
locality and context-based prefetching using reinforcement learning. In
Intl. Symp. on Computer Architecture (ISCA), 2015

[10] Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi,
and Onur Mutlu. BLISS: Balancing Performance, Fairness and Com-
plexity in Memory Access Scheduling. IEEE Trans. on Parallel and
Distributed Systems (TPDS), Vol. 27, No. 10, 2016

[11] Hao Zheng and Ahmed Louri. An energy-efficient network-on-chip
design using reinforcement learning. In Design Automation Conference
(DAC), 2019


