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I. CONTEXT

This work was a part of the Imagine Streaming Media
Processor project at Stanford University led by Bill Dally. The
rest of us were PhD students at the time. The key idea behind
the Imagine processor was its bandwidth hierarchy, which
was designed to support latency-tolerant streaming applica-
tions [O16]1. The hierarchy had small register files feeding
each ALU, a banked stream register file, and a bandwidth-
focused memory controller. In this paper, we set out to find
ways to maximize the achievable memory bandwidth on real
applications running on Imagine using commodity DRAM.

We were unconcerned about memory latency, as streaming
applications exhibit abundant parallelism and can tolerate
long latencies. Imagine performed explicit stream memory
transfers between the stream register file and the DRAM.
Computations could not be performed on a stream until it was
completely transferred to the stream register file. Therefore,
there were a large number of outstanding memory requests
during any stream memory access. Furthermore, the latency
of any individual access was largely irrelevant and only the
overall bandwidth of the transfer would impact performance.
We relied on other mechanisms to ensure that dependent
memory stream references were issued in dependency order.
This opened up a large design space of memory controller
policies in which we could reorder operations arbitrarily, as
long as we maintained memory ordering to any particular
address. We carefully studied DRAM datasheets and set out
to define a design space to enable us to systematically explore
the design of a memory controller for streaming accesses.

After this paper was published, we patented these schedul-
ing policies and mechanisms [2], utilized them in the Stanford
Imagine prototype [4], and extended them at Stream Proces-
sors Incorporated [5].

II. INSIGHTS

In 2000 we had two primary insights. The first was simple,
and obvious in retrospect: dynamic random access memory
is not random access memory, but instead has access charac-
teristics that are dependent on the multi-dimensional DRAM
organization. We can take advantage of this organization when
scheduling memory operations. The second was more subtle:
a scheduling approach that is aware of DRAM organization
can produce a more desirable overall outcome than a default
in-order scheduler. Specifically, the default in-order scheduler
minimizes the worst-case latency of DRAM requests. This is
certainly a desirable outcome! However, our paper showed,

1[O..] refers to the bibliography of the original paper.

and subsequent work has confirmed and extended, that max-
imizing achieved aggregate bandwidth, even at the cost of
worst-case latency, can improve overall program performance.

These fundamental insights from our paper remain true to-
day. The architecture of DRAM is essentially the same, though
the bank-row-column organization characteristic of circa-2000
DRAMs now has a fourth layer of hierarchy: a “bank group”
(or “page group”), which adds more complexity to a memory
access scheduler but presents no theoretical difficulty. DRAMs
themselves are also more complex with more complex timing
requirements, but the fundamentals behind memory access
scheduling remain the same.

III. LASTING CONTRIBUTIONS

Looking back in hindsight, there were three major contri-
butions of this paper that have influenced memory controllers
ever since. First, we were the first to suggest the idea of
scheduling memory operations in order to improve bandwidth.
According to Steven Woo, Fellow and Distinguished Inven-
tor at Rambus, memory controllers used in computing have
broadly adopted memory access scheduling. This includes
CPUs, GPUs, special-purpose accelerators, and other kinds
of modern processing units. While the policies are no longer
identical to those that were originally presented in the paper,
modern memory controllers have built upon the ideas that we
first described. So, the core principles of the paper have held
up amazingly well and continue to influence the design of all
modern memory controllers.

For instance, GPUs have made use of, and extended, these
ideas over the past decades. According to Lacky Shah, one of
the architecture leaders at NVIDIA:

The concepts in the paper about reordering the
memory system requests are certainly relevant and
important to achieve high bandwidth in the GPU
memory system. There are many clients of the
GPU memory system making requests that happen
to have locality in the DRAM banks. . . . Gathering
the requests and organizing them to achieve high
memory utilization allows us to saturate memory
bandwidth for many workloads and has a big impact
on performance. Over time we have extended these
concepts to account for different priorities of the
requests so we can have multiple such queues for
different traffic classes to achieve both high band-
width and to avoid starvation of various clients that
depend on the latency of the requests.

These ideas are also important for domain-specific ac-
celerators implemented via ASICs, FPGAs, and GPUs [3].



Domain specific accelerators, such as for machine learning,
are designed to exploit the parallelism available in a specific
application or domain and to balance the performance of
the computation resources and the memory. Memory access
scheduling is therefore important to ensure efficient use of
expensive external memory bandwidth.

Second, not long after the paper was published, it became
clear that the insights and ideas of the paper transcend latency-
tolerant media processing. By scheduling memory accesses,
both bandwidth and average case latency can be improved,
leading to overall performance improvements. In particular, the
first ready scheduler described in the paper (often cited as FR-
FCFS), became the “gold standard scheduler” of the single-
core era [1]. This scheduler has been considered a general-
purpose scheduler and has been the baseline against which
most other memory controller policies are compared.

Finally, the basic organization of the scheduler composed of
per-bank request tables, as shown in Figure 4 of the original
paper, was widely adopted and is still in use today.

The value of memory access scheduling has increased over
time. To support such scheduling, modern DRAMs expose a
large number of scheduling parameters that can be used by
a memory controller. Unfortunately, however, those parame-
ters are almost entirely hidden to programmers or operating
systems. Instead, system vendors or OEMs package a set of
scheduling parameters into one or a small number of options
that can be selected at boot time. Graphics applications and
systems typically choose to optimize for maximum achieved
bandwidth. But on other platforms, for instance, a vendor may
expose a small set of modes to allow the choice of prioritizing
performance or power consumption.

IV. MISSED OPPORTUNITIES

One of the principal trends evident since 2000 is the
emergence of multicore processors and workloads that share
a memory controller. In hindsight, we should have anticipated
the simultaneous execution of multiple tasks, possibly with
different priorities, competing for access to memory. We
should have described how to handle such situations and how
to prioritize accesses. Our work assumed the memory system
only needed to satisfy a single application’s memory traffic.
Modern CPU systems, however, may feature dozens of cores
and thus potentially dozens of applications competing for
memory bandwidth. Furthermore, modern memory controllers
support a notion of priority that allows particular address
streams or applications to receive preferential treatment. For
example, a screen refresh task on a GPU has hard real-time
requirements with undesirable visual consequences if pixels
are not read and sent to the display in a timely manner. The
multicore revolution was in its infancy, but looking back, it
seems obvious that it would be important to provide fairness
and prioritization to different memory access streams.

We also should have anticipated the possibility of a request
being “starved” for a long period of time and included progress
guarantees. Optimizing strictly for bandwidth may potentially
prioritize a subset of applications that exhibit locality in their

accesses, and thus starve others. Consequently, a memory
controller must make scheduling decisions that balance perfor-
mance implications with ensuring all clients make progress.

Because a memory controller must make scheduling de-
cisions in a very short amount of time, it can realistically
consider only a small and finite-sized window of possible
transactions. (Our 2000 paper analyzed bank buffer sizes of
4–64 entries.) Supporting many simultaneous applications,
then, reduces the number of memory requests considered per
application. Our work did not consider how this might impact
the effectiveness of the various scheduling policies.

V. FINAL THOUGHTS

When we wrote this paper, we were focused on memory
bandwidth for media processing. Throughout our work, we
follow the the mantra “computation is cheap, communication
is expensive”. This has helped us to stay focused on the right
bottlenecks, as we were in this paper. However, while we
knew that memory was and would continue to be an expensive
bottleneck, we did not realize how much memory access
scheduling would grow in prominence as a key mechanism to
help mitigate that bottleneck. In hindsight, the ideas presented
in this paper have been relevant to a much wider range of
systems for a much longer period of time than we ever could
have predicted. We are pleased that this paper has held up so
well!
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