
Retrospective: Exploiting ILP, TLP, and DLP with
the Polymorphous TRIPS Architecture

Karthikeyan Sankaralingam†,⋆ Stephen W. Keckler† Doug Burger‡
†NVIDIA ⋆University of Wisconsin-Madison ‡Microsoft

I. HISTORICAL CONTEXT

When this paper was published in 2003, CPUs were the
dominant computing platform but faced challenges to single-
threaded performance scaling due to limitations on clock
rate [1] and power [5]. Application-specific processors target-
ing desktop, server, network, scientific, graphics, and digital
signal processing workloads were coming to the marketplace
as alternatives to fully general purpose CPUs. One differentia-
tor among these types of processors is the granularity of par-
allelism supported in the architecture. This ranges from many
fine grained processing elements as proposed by a range of
reconfigurable ALU array architectures, to a few very powerful
and large out-of-order processing cores. At that time, short
vector extensions were just finding their way into general-
purpose CPUs and GPUs supported only programmable graph-
ics with low-level programming languages such as Cg. The
challenge for these specialized architectures was one of design
fragility, in which an architecture tailored for one type of
workload would perform poorly when processing a different
type of workload. The polymorphous computing paradigm
was emerging as a way to address fragility to run different
workloads on one hardware.

This paper investigated a type of polymorphous computing
which allowed a single hardware substrate to support dif-
ferent granularities of parallelism to support various work-
loads - instruction-level parallelism (ILP), threaded-parallelism
(TLP), and streaming data-level parallelism (DLP). The paper
explored support for polymorphism in the ISA (and hence the
compiler), and the implementation of polymorphic hardware
mechanisms designed to support multiple types of parallelism
in the compute substrate and memory hierarchy. It also ex-
amined two methods of designing polymorphous architectures
that aim to support multiple granularities of parallelism: (1)
synthesis in which small processing elements can be aggre-
gated to form a larger processor, and (2) partitioning in which
a large processor is decomposed into many processors.

II. THE POLYMORPHOUS TRIPS ARCHITECTURE

The paper proposed the TRIPS architecture, which used a
polymorphous computing substrate with an adaptive, polymor-
phous on-chip memory. We constructed a high-performance
ILP processor with a CGRA execution subtrate, blending
principles of speculative execution and distributed fine-grained
processing to create one large logical core - a 16-wide out-of-
order issue processor with a 1K instruction window. Thread

and data parallelism were supported on the CGRA sub-
strate using different control mechanisms and partitioning. We
showed that this partitioning approach results in a less fragile
architecture by using polymorphous mechanisms to yield high
performance for both coarse and fine-grained concurrence.
ISA. The TRIPS architecture employed a block-oriented ISA
which explicitly encoded predicated dataflow dependences
between operations within a block and executed blocks atom-
ically to facilitate block-level speculation. Blocks could be
mapped to different sized collections of hardware units to
facilitate execution at both fine and coarse granularities. The
block-oriented ISA exposed more explicit concurrency than
sequential ISAs, supporting higher degrees of ILP and DLP
within a single ISA.
Polymorphous hardware. TRIPS polymorphous hardware
mechanisms included a frame space for in-flight inter-
instruction values, register file banks, block sequencing con-
trol, and a configurable memory system. The framespace
was akin to reservation stations, but exposed through the
ISA, allowing different modes of parallelism to use memory
differently. The TRIPS memory tiles could be configured
to behave as NUCA style L2 cache banks [2], scratchpad
memory, or synchronization buffers for producer/consumer
communication. In addition, the memory tiles closest to each
processing tile present a special high-bandwidth interface that
enabled them to be used as streaming register files.
Compiler. We examined one approach to polymorphism in
which the programmer specified the type of parallelism (ILP,
TLP, or DLP) a block was targeting. Based on the block’s
ISA encoding, the hardware’s polymorphous resources behave
differently, such as using the framespace for multiple threads
versus speculative execution. The project also developed com-
piler techniques to handle spatial mappings for the CGRA.

III. REFLECTION AND PERSPECTIVE

A. Were all three forms of parallelism important?

Perhaps not surprisingly, all three forms of parallelism have
continued to grow in importance, albeit at different rates.
While increases in ILP have slowed, single-thread performance
continues to be important. Instead of doubling every 18 months
per early Moore’s law curves, single-thread performance has
improved at a rate of about 6% per year from the Pentium-4
processor (state-of-the art in 2003) to a contemporary Apple
M1 processor running at a slower clock rate. The improve-
ments have come largely from wider execution and more
efficient speculation, representing “specialization” targeting

1



single-threaded applications, exceeding the raw ILP we could
obtain in TRIPS. In retrospect, given that area became cheaper
relative to power, polymorphism benefits we provided didn’t
outweigh it’s costs.

In contrast, data-level parallelism has exploded in impor-
tance, including vector extensions to CPUs, SIMT execution
in GPUs, tensor accelerators, and a panoply of domain-specific
architectures. In particular, the rise of practical machine
learning algorithms (which in turn depend on both high-
performance data parallel architectures and massive training
data sets) has driven many new and differentiated approaches,
including architectures with explicit tensor instruction sets,
wafer-scale integration, specialized blocks in FPGAs, and
machine-learning datacenter architectures. Some of these ar-
chitectures employ explicit dataflow execution models akin to
the TRIPS principles for compute substrates.

Thread-level parallelism has bifurcated in two ways. Driven
in part by cloud computing demands, datacenter processor
core counts have increased to facilitate independent processes
to execute on independent cores, supporting 2 to 8 threads
per core. This form of TLP (or more specifically task-level
parallelism) involves architects determining the balance of
area devoted to core, cache, and memory-controllers at design
time. In contrast, traditional GPU-like architectures employ
massive multithreading both within and across processing
cores, effectively providing “thousand-way” threaded paral-
lelism for a single application. While this parallelism can be
used in support of regular DLP, it can also provide parallelism
to divergent multi-threaded workloads. Kolodny et al. have
analyzed this multi-core and many-core tradeoff [3].

B. How important is a unified ISA?

While our paper argued for a single unified ISA for all three
forms of parallelism, modern processors generally employ
different ISAs to target ILP and DLP, particularly in the
context of domain-specific processors. However, this line is
somewhat blurred for programmable processors due to the rise
of embedded accelerator hardware. For example, both CPUs
and GPUs now employ specialized tensor accelerators, such as
Intel’s AMX matrix extensions and NVIDIA’s Tensor Cores,
that are tightly coupled to the general purpose execution cores.

While embedding hardware accelerator units within a pro-
grammable processor addresses one aspect of fragility, pro-
gramming challenge is addressed elsewhere. Today, framework
layers such as PyTorch, Tensorflow and hardware specific
middleware such as TensorRT then automatically translate
and optimize the algorithms for specific hardware platforms.
This approach improves portability across different types of
architectures (CPU, GPU, and domain-specific), while re-
ducing system level fragility by allowing a single program
expression to run in different ways on different hardware.
However there is a growing complexity in developing these
software frameworks, especially with growing heterogeneity
in the hardware. In retrospect, the specialization problem we
were attempting to solve in the ISA, is now being attacked in
a software middleware abstraction.

C. Did polymorphism turn out to be important?
Compute units. Specialization has clearly been preferred to
polymorphism for compute units in mainstream computing
platforms. The rise of large domains such as AI has instigated
not only domain specific architectures such as Google’s TPU
but also the embedded tensor accelerators described earlier.
Performance, energy, and area efficiencies provided by hard-
ware designed for a narrow task has superseded the capabilities
of configurable hardware. In the area of granularity, both large
(e.g. systolic arrays in TPUs) and moderately sized compute
engines (e.g. Tensor Cores in GPUs) have been fruitfully
deployed. For datacenters, we have seen a trifurcation with
modern systems being optimized for (1) high-single thread
performance (small number of large cores), (2) high multi-
thread performance (many small cores), or (3) and large DLP
(modest core + one or more GPUs per system).
Memory hierarchy. We would argue that polymorphism has
become commonplace in processor memory systems. Many
modern processor now employ common on-chip SRAM for
different purposes including caches and software-managed
scratchpads as we suggested in our 2003 paper. In some
cases, this hardware is configurable (such as the split between
caches and scratchpad in NVIDIA GPUs), while in others
it is programmatic with memory operations that influence
replacement policies to enable software-based cache control.
We expect this trend to continue with additional memory-based
capabilities such as queues and stream buffers.

This paper addressed the problem of fragility — the in-
ability of processors to handle different classes of parallelism.
That problem turned out to be important, using approaches
different than the focus of this paper. Application frameworks
have allowed hardware specialization to be the preferred path
to extract high energy efficiency, while mitigating to some
degree—programmability and productivity challenges. The
problems our spatial compiler addressed are now commonly
encountered in production systems, and solved using frame-
works like integer linear programming our work inspired [4],
and likely to grow in importance. Some of the underlying
mechanisms we proposed for distributed compute processing
and polymorphous memories have appeared in many systems
in practice today. Given the hard limits of energy efficiency,
we expect this specialization trend to continue. Continued
work is needed to balance programmability and computational
efficiency, which this paper tried to address.

REFERENCES

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock Rate
versus IPC: The End of the Road for Conventional Microarchitectures,”
in ISCA, 2000.

[2] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform Cache
Structure for Wire-Delay Dominated on-Chip Caches,” in ASPLOS, 2002.

[3] A. Kolodny, E. Bolotin, I. Keidar, Z. Guz, A. Mendelson, and U. C.
Weiser, “Many-Core vs. Many-Thread Machines: Stay Away From the
Valley,” IEEE Computer Architecture Letters, vol. 8, no. 01, Jan. 2009.

[4] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan,
and B. Robatmili, “A general constraint-centric scheduling framework for
spatial architectures,” in PLDI, 2013.

[5] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. Strenski,
and P. Emma, “Optimizing Pipelines for Power and Performance,” in
MICRO, 2002.

2


