
RETROSPECTIVE: Exploiting Choice: Instruction

Fetch and Issue on an Implementable Simultaneous

Multithreading Processor

Dean M. Tullsen
∗
, Susan J. Eggers

†
, Joel S. Emer

§,∧
, Henry M. Levy

†,‡
, Jack L. Lo

‡
, and Rebecca Stamm Fox

∗∗

∗
University of California, San Diego

†
University of Washington

§
Massachusetts Institute of Technology

∧
Nvidia

‡
Google

∗∗
Retired from Digital/Compaq

I. Technical Backdrop

In the early 1990s, hardware support for instruction-level

parallelism was advancing at a rapid rate. For example, Digital

introduced the 2-way superscalar Alpha 21064 in 1992 and

Intel introduced its 2-way Pentium in 1993. By 1995, the

Alpha architecture had already jumped to 4-way superscalar

(the 21164). This appeared to be a trend that would continue.

While that did not pan out the way many expected, what

was abundantly clear even then was that our ability to

build hardware for instruction level parallelism was quickly

outpacing our ability to find it in software.

Multithreading was a technology with a very long history,

going back to the 1950s (and in fact, one of the authors did

his PhD thesis on multithreading in 1979). It had appeared

in real machines like the CDC 6600 PPU [6], the Denelcor

HEP [4], etc. A multithreaded architecture keeps the state

of multiple contexts in hardware at once, allowing it to

introduce instructions into the pipeline from multiple threads

without waiting for a slow software context switch. Several

of the earliest machines were fine-grain multithreaded, able

to introduce an instruction from a distinct thread each cycle.

Others, like MIT’s TX-2 and Alewife [1] architectures, utilized

a less aggressive model, coarse-grain multithreading, which

can be thought of as a hardware accelerator for context

switches (able to do them in a handful of cycles, fast enough

to profitably switch on long memory latencies). Fine-grain

multithreading, however, saw a revival in the 1990s Tera MTA

architecture [2].

II. Simultaneous Multithreading (SMT)

We decided to speculate on how multithreading would

combine with modern, high performance superscalar pro-

cessors, resulting in our ISCA 1995 paper introducing the

term Simultaneous Multithreading (SMT) [7]. There were two

aspects to that combination that were critical.

First, we combined multithreading with superscalar, and

defined a new model of multithreaded execution, which

aggressively mixed instructions from multiple threads in

instruction issue, seeking to maximize utilization of the issue

bandwidth and the rest of the pipeline. That’s the model

we called SMT and demonstrated the benefits in a wide

superscalar processor (recall, most of the community thought

8-wide superscalar processors were one announcement away).

But, perhaps more critically, and ultimately of much higher

impact, we combined multithreading with an aggressive

high-performance pipeline. This represented a huge break in

mindset. Multithreading, particularly the more aggressive fine-

grain machines, had used multithreading primarily to simplify

the pipeline. The CDC 6600 PPU demonstrated that with 10

threads, and instructions fetched and executed in strict thread

sequence, a 10-cycle memory latency could be completely

hidden without the need for caches. The HEP (and similarly,

the Tera MTA that came later) had no support for forwarding,

thus even simple arithmetic operations incurred a latency of

8 cycles, which could be completely hidden in the presence

of enough threads. This, then, was the tradeoff that many

believed was inherent to multithreaded architectures – they

were fast in the presence of many threads, but agonizingly

slow without sufficient thread-level parallelism. No one had

seen a multithreaded architecture that rivaled the fastest

single-thread pipelines, even when running only one thread.

Thus, the real impact of our first SMT papers was this

revolutionary notion that we could build a pipeline that was

just as fast as ever with one thread, but faster with more –

key to that was (1) retaining the full suite of performance

features of a state-of-the-art pipeline, and (2) allowing each

thread full access to as many pipeline resources as possible.

If that was indeed the most critical contribution of those

papers, that explains why the authors have always believed

that the second SMT paper in 1996 (the subject of this

retrospective) was the most important and impactful of the

two. The first paper was more about the execution model

– what you could get if you could build it. This paper was

about how to actually build it.

1



But there were a couple of developments that made "how to

build it" far more interesting than a follow-up implementation

paper. The first was the rapid switch from in-order processing

to out-of-order processors. The first SMT paper was written

in the context of in-order processors. But between the start

of the first paper and the second, there were numerous

announcements of out-of-order machines and the ground

had officially shifted.

Second, intrigued by ideas in the 1995 SMT paper, an Alpha

architect (Joel) contacted the group, resulting in Dean going

to Massachusetts to spend a week brainstorming with Joel and

Rebecca (of DEC’s VSSAD advanced R&D team) how SMT

might be used to enhance a future Alpha processor (the 21464)

– which was planned to be both out-of-order and 8-wide

superscalar. This began an academic/industry collaboration

that resulted in the second SMT paper, which was thus deeply

grounded in the issues of a real, industry-leading processor

design.

Those discussions, and ones that ensued later, drove many

directions pursued in this paper. Several discussions were

particularly memorable. First, it became clear quickly that

while out-of-order plus SMT was likely more complex than

in-order plus SMT, the marginal complexity of adding SMT

to an out-of-order machine was far less – because many

of the capabilities and shareable resources we wanted were

already there. Register renaming, which hides the logical

names of registers, also hides the thread IDs, and as well

it guarantees complete disambiguation between registers

belonging to different threads. Therefore, the scheduler need

not change at all, and instructions can be mixed from multiple

threads each cycle for free. The register file’s size is dominated

by the demand for renaming registers, not the logical registers,

so the incremental cost of adding a thread (32 logical registers)

to the register file is lower.

Second, we discussed how to fetch for an SMT processor.

The obvious choice of round robin fetching (CDC 6600 PPU

style) was quickly found to be a bad idea – it was too easy

for a stalled thread to flood the pipeline with bad instructions.

It was thus clear that we needed to find a better way, and this

insight was the most enduring one; namely, that the fetch

unit was the key to everything in an SMT processor.

An out-of-order processor hums when parallelism is maxi-

mized in the instruction window – it ensures that ALUs are

heavily utilized, throughput is high, and critical structures do

not fill up due to stalled instructions, which can cause the

whole pipeline to stall. In a single-threaded pipeline, you have

few options to increase parallelism, except to pursue more

and more speculation. In a multithreaded pipeline, you have

this marvelous ability to impact the quality (and parallelism)

of the instructions you fetch, because you get to decide which

thread you fetch from every cycle.

We examined fetch policies that accounted for level of

speculation (based on branches) and likelihood of a memory

stall (based on loads). But the best solution was conceptually

simple and more holistic – try to keep the number of in-

flight instructions balanced between threads (the ICOUNT

policy). If a thread starts to fetch stalled instructions, it soon

becomes out of favor. A thread that is recovering from a

branch mispredict and flush is brought back up to speed

quickly. Threads with long chains of dependent instructions

will tend to fetch at the same rate as they execute.

III. Impact

There is no question the impact of this work is significant,

both on the research community, and then eventually (it took

a few years) on industry. Many papers looked at aspects

of the SMT design – among them, a whole slew of papers

tweaked and modified the ICOUNT mechanism to get even

better performance. A number of works attempted to exploit

the hardware support for multithreading for other interesting

purposes – helper threads, thread-level speculation, etc.

The first machine to be announced as supporting SMT,

naturally, was the aforementioned Alpha 21464, announced

in 1999 with an expected ship date of 2003 [3]. To the

disappointment of all of these authors, unfortunate timing

of company breakups and acquisitions ensured that that

processor never saw the light of day.

We were forced to wait, then, until Intel introduced an

SMT Xeon processor in 2002 (choosing to trademark the term

hyperthreading to put their own stamp on the terminology).

It can be argued that the introduction of SMT, along with

chip multiprocessing which came to Intel a little later, is one

of the two most visible changes to processor architecture in

the last quarter century, if not longer.

Intel has continued to feature SMT in every major high-

performance processor they have introduced. AMD came to

the game much later, finally introducing SMT in their Zen

architecture in 2017. While both are still stuck at 2 threads,

there have been more aggressive SMT implementations,

including the IBM Power 8 with eight threads.

Of late, SMT has fallen out of favor in some circles, due

to security concerns. Certainly, sharing virtually all core

resources maximizes the potential leakage between co-located

threads. However, recent work [5] has demonstrated the

design of a secure (or at least no less secure than multicore)

SMT processor that sacrifices little of the performance and

efficiency advantages of SMT.

References

[1] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz, “April: A processor

architecture for multiprocessing,” in Proceedings of the 17th Annual
International Symposium on Computer Architecture, 1990.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield,

and B. Smith, “The Tera computer system,” in Proceedings of the 4th
International Conference on Supercomputing, 1990.

[3] J. Emer, “Simultaneous multithreading: Multiplying alpha performance,”

in Proceedings of Microprocessor Forum, 1999.

[4] B. J. Smith, “Architecture and applications of the HEP multiprocessor

computer system,” in SPIE Real Time Signal Processing, 1981.
[5] M. Taram, X. Ren, A. Venkat, and D. Tullsen, “SecSMT: Securing

SMT Processors against Contention-Based Covert Channels,” in USENIX
Security Symposium (USENIX Security), 2022.

[6] J. E. Thornton, Design of a Computer—The Control Data 6600. Scott

Foresman Co, 1970.

[7] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithreading:

Maximizing on-chip parallelism,” in Proceedings of the 22nd Annual
International Symposium on Computer Architecture, 1995.

2


