
RETROSPECTIVE: Bubble-Flux: Precise Online
QoS Management for Increased Utilization in

Warehouse Scale Computers
Jason Mars, Lingjia Tang
University of Michigan

{profmars, lingjia}@umich.edu

I. CONTEXT

The Bubble-Flux paper, published at the International Sym-
posium on Computer Architecture (ISCA) in 2013, sought
to address the challenge of microarchitectural resource con-
tention between co-located applications and its effect on
Quality of Service in data centers. During this period, the
field of data center computing was in its nascent stages,
with a particular focus on holistic Warehouse-Scale Computers
(WSCs) architecture and design. Indeed, this was a time when
technologies that have since become the norm in this domain,
such as Kubernetes, were in their experimental phase and
largely restricted to in-house operations at tech giants like
Google.

During this era, the new performance indicator known as
quality of service (QoS) had emerged in the realm of data-
center computing and was swiftly recognized as the key
metric for evaluating performance in this domain. Ensuring
the QoS for latency-sensitive applications was critical for
optimizing server utilization and curtailing costs, especially
when considering multiple user-facing applications run on the
same server in WSCs. Bubble-Flux aimed to precisely predict
contention and QoS at scale and in real time.

The conceptualization of Bubble-Flux, along with its pre-
decessor Bubble-Up [1], was driven by Jason Mars over
the course of two summers. Initially, as a research intern
at Google, Mars formulated Bubble-Up, which was later
published at Micro 2011 and was selected as a MICRO Top
Picks in the community. Bubble-up represented a proof of
concept the provided a controlled static profiling analysis
for precise prediction. The technique was evaluated using
production Google workloads. However Mars then developed
the idea further into Bubble-Flux during a subsequent summer
as a visiting scholar at Google after his appointment as an
assistant professor at the University of California, San Diego
(UCSD). Bubble-Flux was an real-time scale out solution that
continuously ran on 1000s of machines as a service reporting
contention and forecasting QoS as workloads change over the
diurnal pattern in data-centers.

Historically, performance predictability in the context of
microarchitectural resource contention had been an academic
focal point since 2008 through a variety of techniques span-
ning compiler and OS solutions for isolation, among others.
However, the distinguishing feature and key insight of Bubble-
Flux and Bubble-Up was the recognition of the intractability
of precise predictions using the modeling approach the com-
munity had been working on, given the inherent complexity

of real world microarchitecture. Multiple applications can
contend for numerous disparate microarchitectural resources,
and these resources change every generation of processor
released.

In response to this, Jason Mars, in collaboration with Lingjia
Tang and colleagues, developed a range of novel techniques
that are capable of operating at scale across thousands of
machines, saving companies like Google millions of dollars
in practice.

II. KEY CHALLENGES AT THE TIME

The Bubble-Flux innovation was made on the heals of
the early insights toward sample-based empirical approaches
for precise real-hardware prediction. Instead of the modeling
approach, Bubble-up [1] uses carefully crafted sensitivity
profiler (bubbles) to stress test applications and generate a
sensitivity curve. The curve is then used to precisely predict
QoS degradation in colocation scenarios. However there were
key limitations that created a large gap to bridge to realize
deployable and salable solutions.

The first of these key limitations was the assumption inher-
ent in solutions at the time such as Bubble-Up that necessitated
a priori knowledge of applications. This presumption was
a significant constraint on the methodology’s general appli-
cability and robustness. These works were limited in their
ability to handle new scenarios where batch applications were
scheduled but had not been profiled previously. In the (rela-
tively common) scenario that a new application is deployed
alongside long running latency sensitive applications, these
approaches that require prior knowledge couldn’t guarantee
a precise Quality of Service (QoS) during co-location.

This limitation underscored the inherent inflexibility of such
approaches, and the reliance on prior profiling left them ill-
equipped to deal with novel or dynamic scenarios, laying the
groundwork for the development of Bubble-Flux.

A second key limitation presented itself in inability of prior
work to adapt to the dynamic phase-level behaviors of appli-
cations. This lack of adaptability drastically curtailed potential
improvements in utilization realizable and raised the risk
of QoS violations when the application’s behavior diverged
from its profiled behavior unexpectedly. Take, for example,
the dynamic behavior of load fluctuations in latency-sensitive
applications such as Web-search, social networking, or email
services. These applications often experience significant load
fluctuations, typically due to patterns in user behavior. For
instance, an email service might face a high load at 8AM on
Mondays but a significantly lower load at 3AM. Moreover,

1



besides load fluctuations, changes in input latency-sensitive
and batch applications may alter the QoS sensitivity of the
latency-sensitive application or the pressure score of the batch
application. These challenges catalyzed the need for a more
adaptable and dynamic approach, subsequently leading to the
creation of Bubble-Flux.

A third significant limitation of prior work at the time was in
their scope only covering pairwise co-locations, that is, its in-
ability to deal with scenarios where more than two applications
are co-located. This limitation indicates a fundamental lack of
scalability of static profiling techniques for QoS prediction;
there is a state explosion as you scale applications.

The sum of these limitations - the requirement for a priori
knowledge, the lack of adaptability to dynamic behavior
changes, and the restriction to pairwise co-locations - signifi-
cantly impeded the broad applicability of static approaches.
Recognizing these shortcomings, we posited the necessity
for a dynamic yet empirical approach that could address
these issues. This approach needed to capture real-time QoS
sensitivity and precisely manage QoS online, leading to the
evolution of Bubble-Flux from the constrained Bubble-Up
methodology.

III. THE BUBBLE-FLUX SOLUTION

Our response to these challenges was the development of
Bubble-Flux, a runtime system encapsulating a novel approach
to application co-location. Bubble-Flux, which functioned as
a user-level daemon running on each server, consisted of two
main components: the Dynamic Bubble and the Online Flux
Engine.

The first of these, the Dynamic Bubble, had a singular objec-
tive - to conduct an online, lightweight characterization of the
latency-sensitive application. By measuring the instantaneous
QoS sensitivity of the application, it could precisely predict
potential QoS interference due to co-location. It facilitated
the identification of “safe” co-locations to optimize utilization.
The Dynamic Bubble operated by spawning a memory bubble
probe as needed, incrementally applying pressure on the mem-
ory subsystem and observing how different levels of pressure
affected the QoS of the latency-sensitive application. The Flux
Engine controlled the performance interference generated by
the bubble probe itself, ensuring accurate sensitivity curves
while keeping the characterization overhead to a minimum.

When scheduling batch applications, the cluster scheduler
employed a Dynamic Bubble to retrieve the instantaneous QoS
sensitivity curve of the latency-sensitive application running on
a given server. This sensitivity curve was essential for precise
QoS interference prediction, enabling the scheduler to map
batch applications effectively.

The second component of Bubble-Flux was the Online Flux
Engine, which utilized a phase-in/phase-out (PiPo) mechanism
to dynamically enforce application QoS requirements. PiPo
relied on lightweight online QoS monitoring and precise QoS
management to adaptively control the execution of batch
applications. It could manage multiple applications, scaling
beyond pairwise co-locations. This capacity was particularly
helpful when dealing with first-time batch applications, for
which predictions could not be made.

The Flux Engine provided a safety net against potential QoS
mis-predictions or unexpected dynamic behaviors that ren-

dered previous predictions irrelevant. In situations with no safe
co-location available, the Flux Engine could further increase
utilization by running partially phased-out batch applications.
When encountering unknown applications, the Flux Engine
could improve utilization without QoS violations by gradually
phasing in the application.

The Dynamic Bubble and the Online Flux Engine worked
synergistically. The QoS prediction provided by the Dynamic
Bubble facilitated more intelligent co-locations of compatible
applications so that aggressive phase-outs could be minimized
or even avoided. On the other hand, the Flux Engine provided
a safety mechanism to handle potential QoS mis-predictions
or unexpected dynamic behaviors, ensuring a balance between
maintaining QoS and improving server utilization.

IV. THE HERITAGE IN 2023
Reflecting upon our journey in the development of Bubble-

Flux, we are struck by the magnitude of its influence and the
depth of its implications. When Bubble-Flux was conceived,
it was a pioneering approach in its space, the first to provide a
real-time scale-out demonstration of applying a key insight and
philosophy on predicting the interactions between software
and microarchitectural resources.

The philosophy that guided our work was based on a
paradigm shift in how we understood system behavior. Rather
than attempting to create an analytical model of the system, we
chose to sample its behavior through perturbation to predict its
properties. This approach, while unorthodox, was necessitated
by the rising complexity of hardware and the opaque nature of
microarchitecture beneath the instruction set architecture inter-
face. Analytical modeling, while appealing from an academic
perspective, proved impractical in addressing these challenges.

Looking back, we are heartened to see how our work
sparked interest in the broader research community. Bubble-
Flux has been cited nearly 500 times in the decade since its
publication, inspiring hundreds of subsequent research efforts.
These citations demonstrate the relevance and far-reaching
impact of our work.

Perhaps most notably, our work illuminated a cross-cutting
insight: in high complexity dynamic systems - much like in
weather prediction or financial market forecasts - the past can
be used to predict the future. We demonstrated that one could
manufacture a measurable past by running real-time continu-
ous experiments to create historical information for predicting
future behavior. This insight, which we uncovered through
our work on Bubble-Flux, has meaningful implications that
transcend the realms of computer science and engineering.

The story of Bubble-Flux is a testament to embracing
an unorthodox but practical philosophy and method. With
Bubble-Flux we not only made a contribution to the field of
software and microarchitecture interaction but also offered a
broader perspective on understanding and predicting behavior
in complex dynamic systems.

REFERENCES

[1] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
up: Increasing utilization in modern warehouse scale computers via
sensible co-locations,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-44. New
York, NY, USA: Association for Computing Machinery, 2011, p.
248–259. [Online]. Available: https://doi.org/10.1145/2155620.2155650

2


