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I. BACKGROUND

Back in 2017, Deep Neural Networks (DNN) models
were fundamentally changing the development of artificial
intelligence applications. Across various application domains,
including computer vision and natural language processing,
advanced DNN models were proposed to drive higher predic-
tion accuracy and increased functionality.

However, these new models were wider and deeper, result-
ing in higher computation and memory utilization. This trend
increased the hardware demand and resulted in larger training
and inference costs. Considering the high redundancy inside
these larger DNN models, many researchers proposed pruning
to remove unnecessary parameters [1], thereby reducing both
the corresponding computation and memory footprints.

One critical but common issue of most pruning techniques
was neglecting the gap between FLOP reduction and per-
formance improvement on real hardware. Conventional prun-
ing algorithms inserted irregular sparsity into DNN models,
thereby converting dense linear algebra computation into the
sparse computation. Sparse computation is inherently less
efficient because it is very difficult to exploit data-parallel
hardware to accelerate the computation. At the same time, due
to such irregular sparsity, we need to use special sparse formats
(e.g., compressed sparse row format) to store the weight
tensors. The DNN computation then needs extra computation
(and memory accesses) to decode those sparse formats.

Due to these issues, although pruning was dramatically
reducing the FLOPs, in many cases by 90% or more, the
incurred sparsity can actually hurt the overall performance on
both CPUs and GPUs. Further, encoding the sparse format of
pruned DNN models incurs additional storage space, which
makes it difficult to use pruning to reduce the memory cost.
Figure 1 shows the relative execution time, model sizes, and
MAC operations of DNN models pruned by Deep Compres-
sion [1] with respect to the original DNN models. The first
three bars show the relative execution time on the microcon-
troller, CPU, and GPU. As shown in the figure, the relative
execution time is much higher than the relative model sizes
and MAC operations. Weight pruning hurts the performance
of LeNet-5 (on GPU), ConvNet, NIN, and AlexNet, which
causes an execution time increase for these networks.

II. DEVELOPING IDEAS

To address the performance issues of DNN pruning, our
paper proposed to customize DNN pruning based on the under-
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Fig. 1. Relative execution time (Time Microcontroller/ CPU/ GPU), model
sizes, and MAC operations of the networks pruned with the traditional pruning
technique in Deep Compression. NIN and AlexNet are not tested on the
microcontroller due to its limited storage size.

lying data-parallel hardware structure of the target hardware.
We first started our exploration targeting Intel CPUs. One

important hardware support that Intel CPUs provide for uti-
lizing computation parallelism is the SIMD extensions (e.g.,
AVX/SSE). Fully utilizing the SIMD support usually requires
the input and output data to be put in continuous memory space
so the memory access and computation can be vectorized.
With conventional pruning algorithms, although we can store
the remaining weights after pruning into continuous memory
addresses, the corresponding input values that need to be
fetched for matrix multiplication and convolution operations
were not stored consecutively. The result is the underutilization
of the SIMD extensions. In this case, if we can redesign the
pruning algorithms to make sure the required input values are
also stored in continuous memory space, we can make much
better utilization of the SIMD support.

To achieve this goal, we developed a SIMD-aware pruning
algorithm. It puts weights in groups and performs pruning at
the granularity of weight groups. The weights in the same
group are either all removed or kept. The size of the weight
group is enforced to be the same as the SIMD width. In
this case, each weight group and also the corresponding input
values can be fetched in parallel using the SIMD instructions.
This can help dramatically improve the computation perfor-
mance under the same model sparsity. At the same time, the
storage cost is also significantly reduced since we only need
to encode the position of weight groups instead of the position
of every weight.

As part of the initial exploration, the first co-author, Jiecao
Yu, went for a summer internship at ARM to explore SIMD-
aware pruning in more depth. Through the internship, prun-
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ing algorithms were explored for a variety of processors
including low-power microcontrollers. ARM microcontrollers
also provide SIMD extensions. Therefore, we evaluated the
SIMD-aware pruning algorithm, and observed noticeable per-
formance improvement and storage size reduction for both
fully-connected (FC) layers and convolutional (CONV) layers.

For Intel processors, the results were different. SIMD-aware
pruning provided much better computation efficiency than the
conventional pruning methods for FC layers, but it was often
not helpful for CONV layers. There are many more data reuse
opportunities in CONV layers, thus the sparsity required for
achieving performance improvement with both conventional
and SIMD-aware pruning algorithms is much higher than we
could create at a reasonable accuracy budget. Thus, we realized
that we need to further increase the granularity of pruning to
mitigate the negative impact of pruning and proposed node
pruning which removes redundant nodes (e.g., FC neurons
and CONV channels) instead of individual weights. With
node pruning, DNN models after pruning can still maintain
dense regular computation, and the computation reduction can
be effectively transferred into performance improvement even
with lesser amounts of pruning.

After the exploration of desktop processors and microcon-
trollers, we further extended our work for GPUs. Because
of the high hardware parallelism supported by GPUs, node
pruning provided better performance efficiency for both FC
and CONV layers. Across the microcontroller, CPU, and GPU,
Scalpel achieves mean speedups of 3.54x, 2.61x, and 1.25x
while reducing the model sizes by 88%, 82%, and 53%.

Through the exploration process, we concluded that the
pruning granularity and structure need to be adjusted based
on the layer types and target hardware parallelism. Combining
the proposed algorithms and findings, our paper made the
following contributions:

• We demonstrated that the impact of DNN pruning is
closely coupled to both the layer types and the data-
parallel structure of the target hardware.

• We proposed to customize the pruning algorithms to the
target hardware platform.

• We introduced two new pruning algorithms which can
effectively transfer the computation reduction from prun-
ing into computation efficiency improvement and storage
space reduction.

III. LOOKING BACK

Through the years after our paper got published, the
computation cost of DNNs continued to scale upward with
larger models that provide higher accuracy, more features,
and personalization. Recently, the trends of transformers and
large language models like ChatGPT are further pushing the
model size to an extreme. How to serve those extremely large
models is becoming a critical issue blocking the deployment
of those models in the industry. As a conventional method for
compressing DNN models, pruning remains one of the most
important research topics for enabling the serving of expensive
DNN models while maintaining manageable server costs.

Our work is one of the pioneering works proposing the
concept of structured pruning and node pruning. The following
works introduced more granularity levels, e.g., shape-wise
and depth-wise, that pruning can be performed on. Besides,
researchers proposed various new criteria to choose the weight
groups that need to be pruned, achieving higher sparsity levels
while maintaining model accuracy. For example, network
slimming [3] eliminated redundant CONV layer channels
using scaling factors in batch normalization layers, and Struc-
tADMM [7] proposed to use alternating direction method of
multipliers (ADMM) to identify the important neurons.

At the same time, different hardware designs were proposed
to provide better support for structured sparsity. As an ex-
ample, Bit Prudent [5] explored utilizing structured sparsity
for in-cache computation, bringing 1.6× speedup compared
against other in-cache accelerators. Besides, Nvidia Tensor
Cores provided support for accelerating 2:4 fine-grained struc-
tured sparsity [4].

As DNN models involving, structured pruning was studied
on various model and layer types besides conventional com-
puter vision models and CONV layers. For example, Wen et
al. [6] and Lagunas et al. [2] explored applying structured
pruning on LSTM and transformer models, respectively.

Structured pruning can also be combined with other tech-
niques to further accelerate DNN execution. Similar to prun-
ing, low-precision quantization, knowledge distillation, neural
architecture search (NAS), and other techniques were explored
to eliminate the redundancy inside DNN models. These tech-
niques including pruning can be applied and evaluated together
to maximize the computation efficiency while maintaining the
model accuracy.
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