
RETROSPECTIVE: Eyeriss: An Energy-Efficient Reconfigurable
Accelerator for Deep Convolutional Neural Networks

Yu-Hsin Chen
EnCharge AI

yhchen@enchargeai.com

Joel S. Emer
MIT/NVIDIA

jsemer@mit.edu

Vivienne Sze
MIT

sze@mit.edu

I. BACKGROUND

The origins of this 2016 ISCA paper date to early 2013,
when two of the authors met during a faculty visit to MIT.
There ensued a highly animated discussion about the con-
sequences of the end of Moore’s law and the opportunities
in hardware architectures. Although there was significant
agreement on the need and possibilities for hardware inno-
vation, the two had slightly different perspectives on what
was most important: with one focused on extreme efficiency
through specialization (while providing sufficient application-
level flexibility) and the other focused on maximizing flex-
ibility to facilitate application innovation (while providing
sufficiently improved efficiency). After Vivienne joined the
faculty, they continued their discussions while searching for
a concrete project.

An ideal project opportunity presented itself given the 2012
demonstrations of the capabilities of deep neural networks
(DNNs) on various recognition tasks. We recognized that
while DNNs provided high accuracy it came at a high compu-
tational cost, and therefore was a prime target for hardware
support. This domain especially resonated with one of the
authors who had been working on energy-efficient algorithms
and hardware support for video compression (i.e., compressing
pixels) [1], and so DNN computation provided a natural evo-
lution of that work into image recognition (i.e., understanding
pixels). This domain also resonated with the other author who
was in the midst of developing a more general-purpose spatial
architecture that could potentially target this new computation.

With the domain identified, we enticed a student to join the
effort. This student had already fortuitously taken the relevant
courses (computer architecture and machine learning), and he
had already demonstrated in an earlier project his ability to
tackle complex designs (he worked on the most complex block
in video compression [2]) and also was able to think big
picture and in a principled manner.

II. DEVELOPMENT

The interesting, but challenging, properties of DNN work-
loads were that (1) they are so large that the data (weights
and activations) could not be all kept on-chip; (2) the shape
of the computation varied from layer to layer. While there
were earlier efforts to design accelerators for DNNs, they
often simplified the workload by reducing its size and fixing
its shape. Unfortunately, these simplifications could affect the
accuracy of the DNN model. In contrast, the authors decided
that it would be interesting and of great value to directly

tackle these challenges. They would not assume that the DNN
model could fit on chip, meaning that whatever architecture
they designed could support DNNs regardless of the scale.
They would allow the shape of the DNN model to vary, so
that their architecture would be flexible enough to not restrict
the types of layers supported. This increased the likelihood
that whatever design principles they developed would remain
relevant as the DNN models continued to evolve.

It was already well-known that data movement is expensive
in terms of both hardware performance and energy efficiency.
And we quickly recognized that data movement could be
defined in the form of a dataflow that specified how and where
data is moved during the computation (e.g., move activations
or move weights). These principles guided the research to
embark on an effort to formulate and theorize a framework to
reason about the relationship between dataflow and hardware
architectural properties.

At the same time, however, while trying to survey the
existing work, we also found that the choice of dataflow
was often embedded and implied as a part of the overall
micro-architectural design. There was minimal modularity as
each design was presented as uniquely optimized for its use
cases. There also lacked a common terminology for describing
dataflows in a precise yet succinct manner and further analysis
of the existing work was very challenging.

These findings led the authors to develop a system that
could precisely describe all possible dataflows. This was later
recognized as the operation space [3], and each dataflow is a
specific traversal through the space. We observed that there
were certain common patterns of space/time traversal (i.e.,
data movement) among the existing architectures. A salient
feature across these patterns was the stationarity of data, such
as the weight-stationary or output-stationary dataflows as we
highlighted in this paper. We also found that it was very useful
to reason about the architecture by separating out the dataflow
as a distinct attribute of the architecture. By doing so, it was
possible to easily describe a design first via its dataflow and
then by other micro-architectural optimizations.

Given our new nomenclature, it became standard practice
for us to analyze the the content of each new DNN accelerator
paper in terms of these concepts. And invariably a description
would arise of the form, “the paper presents a design based
on a <blank>-stationary dataflow enhanced with these specific
optimizations” (e.g., a network or buffering strategy).

The vast space of possible dataflows, coupled with different
hardware optimization techniques, have echoed the motivating



factors of the project to search for a balance between efficiency
and flexibility. Our journey started with a spatial architecture
(composed of an array of processing elements (PE)) that had
already been researched by one of the authors [4] and a
dataflow developed for the “edit distance” calculation [5] that
used inter-PE communications, which we thought would be
attractive to reduce data movement energy.

This experimentation guided the development of the Eyeriss
architecture [6]. The Eyeriss dataflow, called row stationary,
can be seen as the logical outcome of all of the lessons
discussed above. First, rather than focusing on minimizing
the data movement of a specific data type (weights, input
activations, output activations), it focused on reducing the
overall data movement energy which considers all data types.

Second, the varying shape and size of layers also dictated
the need for mapping of the computation onto the hardware
even when employing the same core dataflow. The existence of
many mappings for a single DNN model allows an architecture
to support multiple space/time traversals with varying speed
and energy efficiency. Thus, the flexibility of an architecture
is manifest through the overall space of valid mappings.

Last but not least, by recognizing the mapping requirements
under the chosen dataflow, we could then maximize efficiency
by stripping away hardware overheads. This resulted in a
design with a very simple PE that has no cache or instructions
as well as a very stylized buffer management scheme, similar
to those used in video compression accelerators [7].

III. IMPACT

An immediate impact of the concepts developed for this
paper is that they informed the architecture of the Eyeriss chip.
The development of that chip validated that the dataflow was
a key attribute of the design and contributed to the overall
efficiency of the architecture. Eyeriss added flexibility by
allowing for an expanded mapping space, which required only
simple, efficient hardware (thus offering a good balance of
efficiency and flexibility). This provided two benefits: First,
by allowing for different mappings for a specific DNN model
layer, we could find the most energy-efficient mapping. Sec-
ond, expanding the mapping space allowed the chip to support
a larger variety of DNN model layers. In specific, this allowed
Eyeriss to support the shapes of all the layers of AlexNet
and thus run what was at the time a large state-of-art DNN
model with high efficiency. This included low DRAM traffic,
even though the chip had limited on-chip storage. Furthermore,
Eyeriss illustrated how a design can be understood as a
dataflow enhanced with other micro-architectural features. The
core Eyeriss dataflow was augmented with micro-architectural
optimizations including exploiting input activation sparsity
by gating activity and using compression to reduce data
movement.

The architecture concepts in this paper also led to a number
of derivative architectures, most directly Eyeriss v2 [8] and
Tetris. And although the Eyeriss design has been superseded
as the most optimal dataflow and architecture it is a baseline
against which new designs are invariably compared.

Ideas in this paper have also impacted subsequent research,
including formalizing the notions of data orchestration and
specific data orchestration idioms [9] and the dataflow and
mapping modeling in this paper was a direct antecedent of
Timeloop [3] and many follow-on mapping efforts.

However, we feel the lasting impact of this paper is the
method that we used to describe a DNN accelerator architec-
ture. In specific, they can be characterized by their dataflow,
and by separating out the dataflow as a discrete architectural
facet of a design, thus making it easier to understand the
designs of DNN (and other) accelerators. Also, this paper
highlights that certain dataflows can be identified by the data
that is kept stationary (i.e., a *-stationary dataflow). This
terminology has become deeply ingrained in our community
(and beyond) and is core to the book we coauthored [10].

IV. CONCLUSION

This project taught us several important lessons in research.
First, it is important to directly tackle the complex and difficult
problem head-on as the resulting solutions can be long-
lasting. Second, it is important to collaborate with people with
complementary skill sets and sometimes distinctly different
views (e.g., emphasis on flexibility versus efficiency); it can
result in a compromise solution that has a high impact as it
satisfies multiple criteria. Finally, in this age of exponentially
increasing number of publications, it is increasingly important
to organize and formalize the design space in order to pro-
vide deeper long-lasting insights that advance understanding
(scientific knowledge) and improve communication.

REFERENCES

[1] V. Sze, M. Budagavi, and G. J. Sullivan, “High Efficiency Video
Coding (HEVC): Algorithms and Architectures,” in Integrated Circuit
and Systems. Springer, 2014.

[2] Y.-H. Chen and V. Sze, “A deeply pipelined CABAC decoder for HEVC
supporting level 6.2 high-tier applications,” Transactions on Circuits and
Systems for Video Technology, 2014.

[3] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A
Systematic Approach to DNN Accelerator Evaluation,” in International
Symposium on Performance Analysis of Systems and Software, 2019.

[4] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig,
V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel et al., “Triggered instructions:
A control paradigm for spatially-programmed architectures,” Interna-
tional Symposium on Computer Architecture, 2013.

[5] J. J. Tithi, N. C. Crago, and J. S. Emer, “Exploiting spatial architectures
for edit distance algorithms,” in International Symposium on Perfor-
mance Analysis of Systems and Software, 2014.

[6] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” Journal of Solid-State Circuits, vol. 52, no. 1, 2017.

[7] V. Sze, D. F. Finchelstein, M. E. Sinangil, and A. P. Chandrakasan, “A
0.7-V 1.8-mW H. 264/AVC 720p video decoder,” Journal of Solid-State
Circuits, 2009.

[8] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A Flexible
Accelerator for Emerging Deep Neural Networks on Mobile Devices,”
Journal on Emerging and Selected Topics in Circuits and Systems, 2019.

[9] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan,
S. W. Keckler, C. W. Fletcher, and J. Emer, “Buffets: An efficient and
composable storage idiom for explicit decoupled data orchestration,”
in Architectural Support for Programming Languages and Operating
Systems, 2019.

[10] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Processing of
Deep Neural Networks,” Synthesis Lectures on Computer Architecture,
2020.


	Background
	Development
	Impact
	Conclusion
	References

