
RETROSPECTIVE: Scheduling Heterogeneous
Multi-Cores through Performance Impact

Estimation (PIE)
Kenzo Van Craeynest

⊕
, Aamer Jaleel†, Lieven Eeckhout‡, Paolo Narvaez§, Joel Emer†∗⊕

Government of Flanders †Nvidia ‡Ghent University §Intel ∗MIT

This paper was published in ISCA 2012, at a time when
single-ISA heterogeneous multi-core processors had started to
gain popularity. Aamer Jaleel and Joel Emer were members
of VSSAD, an advanced R&D group within Intel. Kenzo
Van Craeynest was a summer intern in VSSAD visiting
from Ghent University, where he was pursuing a PhD under
the supervision of Lieven Eeckhout. Paolo Narvaez was an
architect in Intel’s Data Center Group (DCG). This work was
the first to take a principled approach using CPI stacks on one
core type to predict application performance on a different
core type in a single-ISA heterogeneous multi-core processor.

I. OVERVIEW

Early multi-core processors of the PC era were homogeneous
and focused on providing better performance by employing
increasingly complex micro-architectural components, such as
deep out-of-order buffers. This came at the cost of increased
power consumption which was ill-suited for the new emerging,
battery-sensitive devices that had to operate at a low thermal
design point (TDP). To address this market, in 2008 Intel
launched the Atom processors, which were initially used to
power netbooks, tablets, and low-powered devices. The smaller
Atom architecture used mostly the same ISA as the more
complex Intel processors, but operated at a lower power range.

The benefits of using designs with different TDP targets is
illustrated in Figure 1 using a power vs. performance graph.
While ‘small’ and ‘big’ processors, or cores, can be tuned to
operate at different power design points on their respective
curves, the ranges are limited. Even at its lowest frequency,
a big core cannot reduce its power beyond a minimum level
due to other factors (e.g., leakage). Similarly, a small core can
obtain higher performance by running at a higher frequency,
but only up to a point. While there is some overlap in TDP
range, the small core is better suited for low-TDP applications
while the big core is better suited for high-TDP applications.

Consequently, processor core types were selected based on
the workload characteristics that the system was expected
to run. This was adequate for high-performance systems
with sufficient power budgets (provisioned with a big core)
or for power-constrained systems that did not require high-
performance behavior (provisioned with a small core). How-
ever, this did not work well for systems with a wide dynamic
range of application needs. An example of such a system is a

Fig. 1. Dynamic Range of Heterogeneous Multi-Core Processors.

smartphone, which is battery-constrained, and most of the time
operates in an efficient low-power mode, but needs to exhibit
bursts of high performance during user interaction to provide
good user experience. In 2011, ARM announced the first
commercial heterogeneous core architecture. Its big.LITTLE
architecture combined a small A-7 core with a big A-15 core.

While the initial motivation for combining ISA-compatible
heterogeneous cores was to extend the dynamic range of
computing systems, its emergence opened up a new field
of possibilities on how to schedule and effectively combine
applications running on both types of cores. While some of
the research efforts at the time focused on how to schedule
software threads based on power constraints or user experience
requirements, our ISCA 2012 paper focused on maximiz-
ing throughput performance given a fixed set of big and
small cores and software threads. The goal was to allow the
scheduler to use the limited set of big cores to service the
workloads that will benefit the most from the bigger cores,
while scheduling other workloads to the small cores.

II. SUBOPTIMAL HETEROGENEOUS SCHEDULING

The effectiveness of heterogeneous multi-cores hinges on
how well a scheduler can map workloads onto the most
appropriate core type. Making wrong scheduling decisions
can lead to suboptimal performance and excess energy/power
consumption. To address this scheduling problem, proposals
at the time used workload memory intensity as an indicator
to guide application scheduling [O2, O9, O17, O30].1 Such

1[On] citations refer to citations in the original paper.



proposals scheduled memory-intensive workloads on a small
core and compute-intensive workloads on a big core which
created suboptimal scheduling.

III. PRIMARY INSIGHT
In general, small (e.g., in-order) cores provide good perfor-
mance for compute-intensive workloads whose subsequent
instructions in the dynamic instruction stream are mostly
independent, i.e., high levels of inherent instruction-level
parallelism (ILP). On the other hand, big (e.g., out-of-order)
cores provide good performance for workloads when the ILP
must be extracted dynamically or the workload exhibits a
large amount of memory-level parallelism (MLP). Therefore,
we showed that scheduling decisions on heterogeneous multi-
cores can be significantly improved by taking into account
how well a small and big core can exploit the ILP and MLP
execution characteristics of a workload.

IV. PERFORMANCE IMPACT ESTIMATION
Performance Impact Estimation (PIE) estimates the expected
performance of a workload on each target core of a het-
erogeneous multi-core processor in terms of its Cycles Per
Instruction (CPI) stack. CPI stacks are a valuable performance
analysis technique that have origins in early work by one of
the authors in a 1984 ISCA paper on the VAX-11/780.

PIE collects CPI stack, MLP and ILP profile information
during runtime on any one core type, and estimates perfor-
mance of the workload if it were to run on another core type.
In essence, PIE estimates how a core type affects exploitable
MLP and ILP, and uses the CPI stacks to estimate the impact
on overall performance. In particular, PIE breaks up total
CPI into two major components: the base component and the
memory component, where the former lumps together all non-
memory related components:

CPI = CPIbase + CPImem. (1)

We found that MLP and ILP ratios provide good indicators
on the performance difference between big and small cores.
Therefore, we use MLP, ILP and CPI stack information
to develop our PIE model (see Figure 2). Specifically, we
estimated the performance on a small core while executing
on a big core as follows:

CPIsmall = C̃PIbase small + C̃PImem small

= C̃PIbase small + CPImem big ×MLPratio.
(2)

We estimate the performance on a big core while executing
on a small core in a similar manner:

CPIbig = C̃PIbase big + C̃PImem big

= C̃PIbase big + CPImem small/MLPratio.
(3)

In the above formulas, C̃PIbase big refers to the base CPI
component on the big core estimated from the execution on the
small core; C̃PIbase small is defined similarly. The memory
CPI component on the big (small) core is computed by
dividing (multiplying) the memory CPI component measured
on the small (big) core with the MLP ratio.

0

2

4

6

8

10

12

14

big predicted small

memory component

base component

predicted small 
running on small 

C
P

I 

running on big 
predicted big 

Fig. 2. Illustration of the PIE model.

V. IMPACT

PIE is an efficient hardware technique to assign workloads to
the most suitable core in a heterogeneous multi-processor with
the goal of optimizing overall system performance. Follow-on
heterogeneous scheduling research developed more advanced
techniques to optimize system performance while guaranteeing
fairness (i.e., ensuring all threads in a multi-program and
multi-threaded workload make equal progress) [3] and while
also meeting the power budget [1], [2].

Since this work’s publication, we have seen the release of
important new commercial products featuring heterogeneous
multi-cores. For example, in 2017, ARM announced its Dy-
namIQ architecture, an extension of its original big.LITTLE
design. It enables additional scheduling flexibility by allowing
different types of cores to be placed in the same cluster and
share cache while letting each core be individually frequency-
managed. In 2021, Intel released its Alder Lake processor
which features a combination of performance cores (P-cores)
and efficient cores (E-cores). Like PIE, Alder Lake relies
on a hardware-based technology called Intel Thread Direc-
tor for scheduling. Intel Thread Director captures various
performance metrics from the processor to guide the OS
to choose the right type of core for each software thread.
As more heterogeneous processors arrive in the market with
increasing levels of flexibility, heterogeneity and complexity,
it will become more critical for efficient scheduling algorithms
to achieve the best balance of performance, power and user
experience. PIE provides a principled framework for high-
performance scheduling on heterogeneous processors.

REFERENCES

[1] A. Adileh, S. Eyerman, A. Jaleel, and L. Eeckhout, “Maximizing
heterogeneous processor performance under power constraints,” ACM
Transactions on Architecture and Code Optimization, vol. 13, no. 3, pp.
1–23, Sep. 2016.

[2] A. Adileh, S. Eyerman, A. Jaleel, and L. Eeckhout, “Mind the power
holes: Sifting operating points in power-limited heterogeneous multi-
cores,” IEEE Computer Architecture Letters, vol. 16, no. 1, pp. 56–59,
Jan. 2017.

[3] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout,
“Fairness-aware scheduling on single-ISA heterogeneous multi-cores,” in
Proceedings of the IEEE International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), Sep. 2013, pp. 177–187.

2


