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I. CONTEXT FOR THE PAPER

In the early 1990s, academics were exploring alternatives to
the Von Neumann stored-program architecture by combining
high-level hardware synthesis with reprogrammable FPGAs. In
the extreme, their vision was to replace a store of sequential
instructions and a program counter with a single “instruction,”
essentially a description of the circuit that implemented an
entire algorithm (with all its attendant parallelism). Changing
the program could be accomplished by simply re-writing the
FPGA configuration. Despite showing orders of magnitude
speedup on data-intensive applications, this movement was
largely dismissed by mainstream computer architecture re-
searchers. In part, this was reasonable given the lack of high-
level languages, the poor tool chains (AKA long “compile”
times), poor system integration, and the fixed size of the
target FPGAs with no easy way to take advantage of Moore’s
Law leading to larger FPGAs. It was also largely ignored
by the FPGA companies whose revenue was mostly in logic
emulation and the consolidation of random logic on printed
circuit boards.

Starting around 1994, DARPA initiated a number of pro-
grams at universities and industry to investigate the applicabil-
ity of so-called “adaptive computing” techniques. At Carnegie
Mellon, our intent within this program was to investigate what
could happen if you could change the configuration of an
FPGA as fast as you change the instructions in a conventional
computer. We sought to use “dynamic reconfiguration” to
provide some of the things that were inadequate about the
FPGA as a computing target. Specifically, we sought to:

• Accelerate compilation speed: Conventional FPGAs took
hours to convert an algorithmic description to the bits
required to program the device. This made the edit-
compile-run loop comically unproductive. We hoped to
make that a reality by “virtualizing” an FPGA and not
making the compiler responsible for meeting every fixed
constraint of the target device.

• Provide cross-generational value of software: Given the
rapid pace of Moore’s law, if a particular bitstream would

only run on one instance of a chip in one process technol-
ogy, it could never keep up with the exponential accelera-
tion of old code experienced by CPUs. We hoped that by
creating some independence between representation and
execution, we could enable the investment in hardware
configurations to pay off for multiple generations of
chips.

Along the path to those goals, we discovered some things.
First, we simply could not afford, in terms of power or wires,
to change the entire FPGA configuration every cycle. If we
could only configure a portion at a time, how could we split up
the computation so that configuring a portion of the application
every cycle made sense? If the computation was a pipeline, we
could configure each stage as the pipeline filled with data. This
is where the idea of pipeline configuration originated. Second,
even with pipeline configuration, instruction bandwidth was
still a problem. As a result, we had to reconsider the idea of a
bit-level FPGA-like fabric. Using a larger processing element
(PE) and bus size would reduce instruction bandwidth, but
it would also lose some efficiency on the variable datawidth
applications. The central evaluation in the ISCA paper is the
trade-off between PE bit-size and computational density given
a constrained instruction path.

In addition to the technical advances, the PipeRench paper
updated the methodology used to investigate this field based
on the methodology used in much of the ISCA community. We
invested in building out a diverse set of application kernels, a
compiler that could retarget different variants of the PipeRench
architecture, and an area and performance model that would
allow us to make the right trade-offs.

II. WHAT HAPPENED TO PIPERENCH?

After this paper’s publication, we successfully designed,
fabricated, and got the PipeRench chip working in our lab [6].
It successfully ran our DCT, FIR filter, and IDEA encryption
kernels faster than CPUs of the day. We used the baseline
of this work to explore a set of different applications and
alternative implementations [3], [4], accelerated compilation



techniques. At least five students received PhDs based on
extensions to the PipeRench chip, compiler, and architecture.

We attempted to commercialize the technology first with a
Carnegie Mellon spin-off company. That company was too late
for one Silicon Valley bubble, and too early for the next one.
Later, CMU licensed the technology to two semiconductor
companies in succession. But, it never became a commercial
reality.

III. INFLUENCE OF PIPERENCH

The idea of dynamic reconfiguration is now practically a
requirement in modern FPGAs. Intel and AMD FPGAs both
provide the ability to dynamically reconfigure a portion of
their circuitry, while other portions continue to operate. This
allows a portion of the FPGA to have a “privileged” hardware
design, and a customer region that can be changed to support
cloud customers.

A number of academic and commercial efforts have at-
tempted to leverage the idea of very-high speed dynamic
reconfiguration. Among those efforts are:

• Startup company Tabula had parts that reconfigured an
FPGA-like device every cycle to enable much denser
logic density. In a way, it was like pipeline reconfiguration
where the logic for every cycle was broken into a pipeline
of sub-cycles.

• NEC Laboratories America, Inc. designed and proto-
typed a PipeRench-inspired architecture called SimPLE
specifically for accelerating logic simulation in the Elec-
tronic Design Automation space. SimPLE didn’t use
virtualization; rather it was a statically configured VLIW-
like architecture similar to PipeRench’s fabric. The large
number of interconnected FPGA primitives coupled with
high off-chip memory bandwidth enabled it to achieve
speedups over conventional processors [1].

• Stanford developed Plasticine [5], which is also honored
as an influential paper in this quarter decade of ISCA,
has a Pattern Compute Unit that looks fairly similar
to the PipeRench fabric, consisting of functional units
and a pass register file. This academic chip has been
commercialized by the company SambaNova.

IV. HOW DID OUR PREDICTIONS WORK OUT?

Without making a claim of causality, the PipeRench paper
did anticipate a number of trends that are clearly evident today:

• Accelerator integration: Accelerators maybe the most
important way to accelerate computing in a time after
Moore’s Law [2]. FPGAs or other spatial accelerators
exist in cloud services such as Azure and AWS.

• Coarse-grained unit integration in FPGAs: All modern
FPGAs have some hardened support for dense numerical
operations, including floating point. And in an inverted
version of our prognostication that every CPU would have
FPGA-like coprocessor, almost all new high-end FPGAs
incorporate a multi-core CPU.

• Spatial computing: Many if not most supercomputers
contain FPGAs. GPUs and TPUs use spatially distributed
computing for extreme high-performance.

• Embarrassingly parallel workloads dominate: Some of the
reviewer feedback from the paper attacked the workloads
as too easy. But in our current age of graphics and
ML accelerators, appropriately dealing with outrageous
amounts of parallelism is the primary challenge.

But there were things that definitely did not turn out exactly
as we imagined:

• Compilation time: It still takes ages to place-and-route
an FPGA or a spatial accelerator. Today, teams building
an FPGA-based accelerator contemplate the dimensions
of programmability that they will need for an accelerator,
and include the right level of dynamic programmability
into their device. It is rare to see a custom hardware
design for a single instance of an algorithm.

• Virtualized hardware: Bob Colwell told a panel at an
FPGA conference that, as long as Moore’s Law was in
effect, CPUs accelerated all the software ever written for
them by 1% per week. The idea that the FPGA was
always going to be losing ground unless there was a way
to port applications to newer, denser, faster chips, was
the motivation behind PipeRench hardware virtualization.
But the idea never really caught fire, and as Moore’s law
has slowed, it is less imperative. Software is now more
open, which makes recompilation to a new target more
practical, and binary executables do not carry the value
they once did.

V. FINAL THOUGHTS

We are honored to be recognized by ISCA. It was a great
opportunity to reconnect with our former colleagues, compare
notes, and reflect the outcomes of this work that we were so
passionate about.
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