
RETROSPECTIVE: NanoFabrics: Spatial
Computing Using Molecular Electronics

Seth Copen Goldstein
School of Computer Science
Carnegie Mellon University

Email: seth@cmu.edu

Mihai Budiu
Feldera

mbudiu@feldera.com

I. ORIGINS

The work in this paper is in large part an outgrowth of the
DARPA Moletronics program which was focused on finding
alternative manufacturing methods for computing devices. It
brought together teams that spanned diverse fields across
chemistry, materials science, physics, electrical engineering,
and computer science. The PI meetings were incredible learn-
ing experiences and promoted out of the box thinking to some-
how get beyond Moore’s Law and create practical computing
substrates that didn’t depend on photolithography and silicon.

There were (and still are) many challenges to creating a
computing device out of molecules: finding molecules with
the right electrical properties, assembling the molecules into
useful structures, handling the lack of precise placement and
alignment, dealing with the intrinsic imperfections and defects
that arise from the scalable methods being investigated, and
on and on up the hierarchy. Interdisciplinary research is both
rewarding and challenging. At one meeting we presented our
approach towards creating a model of computation that would
scale to exascale devices—the Split-phase Abstract Machine
model—which we called the SAM model. Suddenly, as we
discussed the SAM model, more people than usual were
paying rapt attention. (It can be very hard to be continually
attentive at interdisciplinary meetings when the hard and
interesting problems in other fields are inaccessible.) What
we thought to be a breakthrough in communication turned
out to be a breakdown in acronyms. SAM to many experts in
the room were “Self-Assembled Monolayers”, an important
method for tackling the problem of assembling the molecules
into devices.

Miscommunications aside, we learned a tremendous amount
from being thrown together to investigate what was and still is
a very hard, but also very interesting problem—how to build
practical computing devices from nanoscale devices using
chemical assembly, AKA, Chemically Assembled Electronic
Nanotechnology (CAEN). The main characteristic of CAEN
from our perspective is that it uses directed self-assembly
to assemble the individual components into a final product.
This naturally leads to highly regular designs. It also leads to
high defect rates. Reconfigurable computing becomes a natural
target architecture for such a process since the information
complexity of the desired circuit can be added after man-

ufacturing and, as the Teramac project [1] showed, defects
could be mapped and then avoided. What made the idea of
CAEN-based reconfigurable fabrics so interesting, however,
was that the molecular components being investigated could
be changed in situ with a resulting change in their electrical
properties, e.g., from a diode to an insulator. Thus, one of the
main drawbacks to reconfigurable fabrics, the overhead of the
configuration, could be eliminated in CAEN-based fabrics.

II. SCALING

The overriding theme of our research was scaling: at
manufacturing time, at compilation, and at run-time. Our
approach, influenced by our previous work on reconfigurable
computing, was to make the manufacturing problem easier
by narrowing the problem to creating regular arrays which
could be configured, after manufacturing, into the circuits we
desired. Even so, the novel nature of the underlying technology
meant that most of the focus of the paper was in making a
case that the architecture proposed architecture was possible.
Twenty years later people are still doing research into array-
based nanoscale architectures. While none use the specific
devices we describe nor have they been commercialized, the
general approach is still an active area of research. We think
that credit for this should go to the ISCA program committee
that was willing to include such a speculative piece of work in
the program. The second piece of the manufacturing scalability
problem is the built-in self-test needed to avoid the defects
expected in such a device. This is also still an active area of
research.

Scaling the compilation process to support the mapping of
an entire program to the underlying reconfigurable fabric was
the other main thrust of our paper. Our approach was to divide
a program into a set of fixed latency basic-blocks, a sequence
of instructions with a single entry-point and where every
instruction had a fixed latency. Instructions with unknown
latencies, e.g., memory operations, function calls ended a
block. The blocks were each compiled into a circuit and
the blocks communicated via an asynchronous protocol. This
allowed us to decompose the compilation problem, to reduce
constraints on the place-and-route problem, and to tolerate the
latency of potentially unknown routes introduced by defects
in the underlying fabric.



III. SPATIAL COMPUTATION

The Split-phase Abstract Machine we talked earlier became
the basis for future work which we called spatial computa-
tion [2]. The limit study in the paper is based on instruction
traces and makes some unrealistic assumptions. The most
extreme assumption is that the memory addresses touched
by a hardware instruction can be statically enumerated. We
followed up on this work with a line of papers on spatial
computation [2], [5], with more realistic assumptions. In spa-
tial computation only computational resources are unlimited;
memory is still centralized. Surprisingly, in spite of the numer-
ous assumptions we made in this paper, the results from our
actual compiled code were quite similar. We also investigated
spatial computation using asynchronous self-timed circuits [6].

On thing we discovered is that even with unlimited com-
putational resources, the compiler is unable to exploit paral-
lelism in typical SPEC-INT programs to provide significant
speed-ups due to control synchronization overheads. Spatial
computation fabrics (e.g., FPGAs, GPUs, TPUs, etc.) are an
attractive substrate for certain classes of parallel computations,
with abundant explicit parallelism, in areas such as high-speed
packet processing in Networking, computer graphics , machine
learning , etc. In fact, today’s problems seem particularly
suited to this model and more than twenty years later we still
find this idea attractive and worthy of further investigation.

IV. WHAT FOLLOWED

One of the unintended consequences of working in this
area was that Seth started thinking about reversing the use
of the molecules involved. In the NanoFabric, we harnessed
the conformational change of a molecule to alter it’s I-V curve,
creating a programmable diode/insulator. What if could change
the shape of the molecule as a result of a computation? This
was the seed behind Claytronics [4], a project Seth started
with Todd Mowry on building and controlling programmable
matter [3]. This project was also highly interdisciplinary
including research into MEMS, power transmission, robotics,
algorithms, language design, and compilers.

We want to thank DARPA and NSF for funding future
looking research and the ISCA community for helping us de-
velop the skills needed to think about designing and analyzing
systems and how to think about, understand, and then harness
the trends in technological change.

REFERENCES

[1] R. Amerson, R. Carter, B. Culbertson et al., “Teramac–configurable
custom computing,” in Proceedings of IEEE Workshop on FPGAs for
Custom Computing Machines, D. A. Buell and K. L. Pocek, Eds., Napa,
CA, Apr. 1995, pp. 32–38.

[2] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein, “Spatial
computation,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Boston, MA,
October 2004.

[3] S. C. Goldstein, J. D. Campbell, and T. C. Mowry, “Programmable
matter,” Computer, vol. 38, no. 6, pp. 99–101, 2005.

[4] S. C. Goldstein, T. C. Mowry, J. D. Campbell et al., “Beyond audio and
video: Using claytronics to enable pario,” AI Magazine, vol. 30, no. 2,
p. 29, Jun. 2009.

[5] M. Mishra, T. J. Callahan, T. Chelcea et al., “Tartan: Evaluating spatial
computation for whole program execution,” in Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XII, 2006, p. 163–174.

[6] G. Venkataramani, M. Budiu, and S. C. Goldstein, “C to asynchronous
dataflow circuits: An end-to-end toolflow,” in International Workshop on
Logic synthesis (IWLS), Temecula, CA, June 2004, pp. 501–508.


