
Prefetching using Markov predictors - 25th
Anniversary Retrospective

Doug Joseph
Samsung Electronics America

Dirk Grunwald
University of Colorado, Boulder

I. MOTIVATION

Processor performance improvements arise from a combi-
nation of process or technology changes, programming model
changes to more clearly express parallelism and architectural
changes to exploit that ILP. All of these factors come with
differing costs and computer architects seek to balance design
changes changes to reduce costs. In the 1990’s, it was clear
that the disparity between CPU and memory speed was
an impending issue and microarchitectural techniques such
as multi-level caches, varying cache block sizes and cache
organizations were important techniques to explore [8]. Later,
the “Memory Wall” [19] made clear the disparity between
CPU performance and memory speed, both in the instant and
the future. Although fundamentally switching the computing
model, as called out in the “Memory Wall” paper was possible,
there were also opportunities to improve existing architectures
through microarchitectural changes.

At the time, Doug Joseph was a Ph.D. student at the
University of Colorado while also working as a member
of the technical staff at IBM working on high performance
systems. Dirk Grunwald had been working on improving
instruction [11] and data [3] caches. Doug Joseph had an
interest an AI and machine learning which is also reflected
in his current position on architectural acceleration for deep
learning. At the same time, Dirk Grunwald had been working
with others on the application of machine-learning to branch
prediction using decisions trees [4]. They decided Doug should
pursue a thesis based on a preliminary idea that was the gensis
of markov prefetching.

At the time, there had been extensive work on memory
prefetchers that used arithmetic relations between memory
addresses and were effective on structured workloads [6],
[10], [13], [15]. Research on prefetching for unstructured
workloads was less common [5], [12], [14], [20]. The Markov
prefetcher that was the core of Doug Joseph’s Ph.D. thesis is a
continuing evolution of what has been called correlation-based
prefetching [1], [5] which was similar to a method patented
by Pomerene et al. [16].

In correlation prefetching, a memory reference A followed
by a miss B would create an entry in a “shadow directory“
that recorded that relationship. In [16], the shadow directory
was off-chip and the reference stream focused on the miss
references from the last-level cache (or references external to
the processor). The key idea of Markov prefetching was to
extend the simple A → B correlation to a full Markov model

of prior memory reference behavior.

II. ELABORATION

The example from the paper included the following Markov
model

constructed from the references A, B, C, D, C, E, A, C,
F, F, E, A, A, B, C, D, E, A, B, C, D, C. That example
highlights most of the challenges that needed to be addressed
- the Markov model has nodes with varying out-degree, the
predictor could be large, there are both high-predictions and
low-probability predictions.

The varying out-degree was addressed by parametric ex-
perimentation, but the size of the predictor as well as the
number and quality of predictions that were made required
more care and, importantly, an analysis method that could
simplify performance comparison. There are three important
metrics used to compare memory prefetchers: coverage (did
you issue a prefetch), accuracy (was it used) and timeliness
(did it arrive in time to improve execution). We decided
to use a simulation based technique coupled with metrics
normalized to the number of demand-references to evaluate
different techniques. We used an in-order processor model
driven by memory references from scientific and commercial
traces that were gathered on an IBM Rs-6000 tracing system.
Using whole-system traces was fortuitous – we had previously
used whole-program tracing programs like ATOM [18] but that
tool couldn’t capture O/S interactions and our analysis found
that including O/S behavior was very important to understand
why we saw improvement in commercial workloads. This
allowed us to experiment with different Markov predictor
replacement policies and methods to record and then prioritize
higher probability prefetch references.

Because the Markov predictor table was quite large
(1MByte) an important part of our evaluation was using
resource-equivalent predictors to dispel the notion that the
large tables were not contributing. For example, we compared
a 2MB cache combined with a 1MB predictor table to a 4MB
cache organization.

1



III. EVOLUTION

There were a number of future avenues we wanted to
explore. At the time, speculative out-of-order processors were
just becoming commercially available with the PentiumPro as
the most well-known example. In theory, innovations such
as speculative loads coupled with a large number of large
miss-status holding registers (MSHR’s) could remove some
of the near-term miss references. With the introduction of
SimpleScalar [2], simulator tooling had improved sufficiently
to enable such analysis although without O/S references.

There has been a tremendous amount of innovation in
memory prefetching since that the Markov prefecter work.
In an effort to address irregular “pointer-chasing” code, Dirk
Grunwald worked with another Ph.D. student, Robert Cooksey,
on Content-Based prefetching [7] modeled after conservative
garbage collection, that prefetches ”likely” virtual addresses
observed in memory references. Here the goal was to goal
was to capture large portions of the Markov structure using
the program data directly.

More recently, machine-learning has been applied to all
aspects of computer system design as demonstrated in the
ISCA ML architecture systems workshop, including the
ML prefetching competition [9]. Systems like Voyager [17]
have adopted more sophisticated prediction methods such as
LSTM’s but also novel methods to reduce the needed state,
such as their 2-level prediction structure.

IV. FUTURES

The memory wall still looms large for computer architec-
ture. At some point, methods like prefetching will reach their
achievable limit and alternate architectural mechanisms will be
needed, which is why memory-intensive computing has been
a ripe area of research and will likely remain so in the coming
decades.

REFERENCES

[1] J. Baer, “Dynamic improvements of locality in virtual memory systems,”
IEEE Transactions on Software Engineering, vol. 2, March 1976.

[2] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”
SIGARCH Comput. Archit. News, vol. 25, no. 3, p. 13–25, jun 1997.
[Online]. Available: https://doi.org/10.1145/268806.268810

[3] B. Calder and D. Grunwald, “Next cache line and set prediction,”
SIGARCH Comput. Archit. News, vol. 23, no. 2, p. 287–296, may
1995. [Online]. Available: https://doi.org/10.1145/225830.224439

[4] B. Calder, D. Grunwald, D. Lindsay, J. Martin, M. Mozer, and
B. Zorn, “Corpus-based static branch prediction,” in Proceedings of
the ACM SIGPLAN 1995 Conference on Programming Language
Design and Implementation, ser. PLDI ’95. New York, NY, USA:
Association for Computing Machinery, 1995, p. 79–92. [Online].
Available: https://doi.org/10.1145/207110.207118

[5] M. Charney and A. Reeves, “Generalized correlation based hardware
prefetching,” Cornell University, Tech. Rep. EE-CEG-95-1, Feb 1995.

[6] T. Chen and J. Baer, “Reducing memory latency via non-blocking and
prefetching caches,” in ASPLOS-V, Oct 1992, pp. 51–61.

[7] R. Cooksey, S. Jourdan, and D. Grunwald, “A stateless, content-directed
data prefetching mechanism,” in Proceedings of the 10th International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS X. New York, NY, USA:
Association for Computing Machinery, 2002, p. 279–290. [Online].
Available: https://doi.org/10.1145/605397.605427

[8] J. Hennessy and N. Jouppi, “Computer technology and architecture: an
evolving interaction,” Computer, vol. 24, no. 9, pp. 18–29, 1991.

[9] “Ml-based data prefetching competition,” Intl. Symp. on Computer
Architecture Workshop, 2021, https://sites.google.com/view/mlarchsys/
isca-2021/ml-prefetching-competition.

[10] A. Klaiber and H. Levy, “An architecture for software controlled data
prefetching,” in 18th International Symposium on Computer Architec-
ture, May 1991.

[11] D. Lee, J.-L. Baer, B. Calder, and D. Grunwald, “Instruction cache fetch
policies for speculative execution,” in Proceedings of the 22nd Annual
International Symposium on Computer Architecture, ser. ISCA ’95.
New York, NY, USA: Association for Computing Machinery, 1995, p.
357–367. [Online]. Available: https://doi.org/10.1145/223982.224446

[12] M. Lipasti and et.al., “Spaid: Software prefetching in pointer and call
intensive enviornments,” in Proceedings of 28th Annual International
Symposium on Microarchitecture, Nov 1995, pp. 231–236.

[13] T. Mowry, M. Lam, and A. Gupta, “Design and evaluation of a compiler
algorithm for prefetching,” in ASPLOS-V, Oct 1992, pp. 62–73.

[14] T. Ozawa and et.al., “Cache miss heuristics an preloading techniques for
general-purpose programs,” in Proceedings of 28th Annual International
Symposium on Microarchitecture, Nov 1995, pp. 243–248.

[15] S. Palacharla and R. Kessler, “Evaluating stream buffers as a secondary
cache replacement,” in 21th Annual International Symposium on Com-
puter Architecture, April 1994, pp. 24–33.

[16] J. H. Pomerene, T. R. Puzak, R. N. Rechtschaffen, and F. J. Sparacio,
“Prefetching system for a cache having a second directory for sequen-
tially accessed blocks,” US Patent US4 807 110A, Feb, 1989, available
at https://patents.google.com/patent/US4807110.

[17] Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin,
“A hierarchical neural model of data prefetching,” in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
861–873. [Online]. Available: https://doi.org/10.1145/3445814.3446752

[18] A. Srivastava and A. Eustace, “Atom: A system for building
customized program analysis tools,” in Proceedings of the ACM
SIGPLAN 1994 Conference on Programming Language Design and
Implementation, ser. PLDI ’94. New York, NY, USA: Association
for Computing Machinery, 1994, p. 196–205. [Online]. Available:
https://doi.org/10.1145/178243.178260

[19] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of
the obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, p. 20–24,
mar 1995. [Online]. Available: https://doi.org/10.1145/216585.216588

[20] Z. Zhang and T. Torrellas, “Speeding up irregular applications in shared
memory multiprocessors: Memory binding and group prefetching,” in
22th Annual International Symposium on Computer Architecture, June
1995, pp. 1–19.

2


