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I. MOTIVATION

Processor performance improvements arise from a combi-
nation of process or technology changes, programming model
changes to more clearly express parallelism and architectural
changes to exploit that ILP. All of these factors come with
differing costs and computer architects seek to balance design
changes changes to reduce costs. In the 1990’s, it was clear
that the disparity between CPU and memory speed was
an impending issue and microarchitectural techniques such
as multi-level caches, varying cache block sizes and cache
organizations were important techniques to explore [8]. Later,
the “Memory Wall” [19] made clear the disparity between
CPU performance and memory speed, both in the instant and
the future. Although fundamentally switching the computing
model, as called out in the “Memory Wall” paper was possible,
there were also opportunities to improve existing architectures
through microarchitectural changes.

At the time, Doug Joseph was a Ph.D. student at the
University of Colorado while also working as a member
of the technical staff at IBM working on high performance
systems. Dirk Grunwald had been working on improving
instruction [11] and data [3] caches. Doug Joseph had an
interest an AI and machine learning which is also reflected
in his current position on architectural acceleration for deep
learning. At the same time, Dirk Grunwald had been working
with others on the application of machine-learning to branch
prediction using decisions trees [4]. They decided Doug should
pursue a thesis based on a preliminary idea that was the gensis
of markov prefetching.

At the time, there had been extensive work on memory
prefetchers that used arithmetic relations between memory
addresses and were effective on structured workloads [6],
[10], [13], [15]. Research on prefetching for unstructured
workloads was less common [5], [12], [14], [20]. The Markov
prefetcher that was the core of Doug Joseph’s Ph.D. thesis is a
continuing evolution of what has been called correlation-based
prefetching [1], [5] which was similar to a method patented
by Pomerene et al. [16].

In correlation prefetching, a memory reference A followed
by a miss B would create an entry in a “shadow directory“
that recorded that relationship. In [16], the shadow directory
was off-chip and the reference stream focused on the miss
references from the last-level cache (or references external to
the processor). The key idea of Markov prefetching was to
extend the simple A → B correlation to a full Markov model

of prior memory reference behavior.

II. ELABORATION

The example from the paper included the following Markov
model

constructed from the references A, B, C, D, C, E, A, C,
F, F, E, A, A, B, C, D, E, A, B, C, D, C. That example
highlights most of the challenges that needed to be addressed
- the Markov model has nodes with varying out-degree, the
predictor could be large, there are both high-predictions and
low-probability predictions.

The varying out-degree was addressed by parametric ex-
perimentation, but the size of the predictor as well as the
number and quality of predictions that were made required
more care and, importantly, an analysis method that could
simplify performance comparison. There are three important
metrics used to compare memory prefetchers: coverage (did
you issue a prefetch), accuracy (was it used) and timeliness
(did it arrive in time to improve execution). We decided
to use a simulation based technique coupled with metrics
normalized to the number of demand-references to evaluate
different techniques. We used an in-order processor model
driven by memory references from scientific and commercial
traces that were gathered on an IBM Rs-6000 tracing system.
Using whole-system traces was fortuitous – we had previously
used whole-program tracing programs like ATOM [18] but that
tool couldn’t capture O/S interactions and our analysis found
that including O/S behavior was very important to understand
why we saw improvement in commercial workloads. This
allowed us to experiment with different Markov predictor
replacement policies and methods to record and then prioritize
higher probability prefetch references.

Because the Markov predictor table was quite large
(1MByte) an important part of our evaluation was using
resource-equivalent predictors to dispel the notion that the
large tables were not contributing. For example, we compared
a 2MB cache combined with a 1MB predictor table to a 4MB
cache organization.
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III. EVOLUTION

There were a number of future avenues we wanted to
explore. At the time, speculative out-of-order processors were
just becoming commercially available with the PentiumPro as
the most well-known example. In theory, innovations such
as speculative loads coupled with a large number of large
miss-status holding registers (MSHR’s) could remove some
of the near-term miss references. With the introduction of
SimpleScalar [2], simulator tooling had improved sufficiently
to enable such analysis although without O/S references.

There has been a tremendous amount of innovation in
memory prefetching since that the Markov prefecter work.
In an effort to address irregular “pointer-chasing” code, Dirk
Grunwald worked with another Ph.D. student, Robert Cooksey,
on Content-Based prefetching [7] modeled after conservative
garbage collection, that prefetches ”likely” virtual addresses
observed in memory references. Here the goal was to goal
was to capture large portions of the Markov structure using
the program data directly.

More recently, machine-learning has been applied to all
aspects of computer system design as demonstrated in the
ISCA ML architecture systems workshop, including the
ML prefetching competition [9]. Systems like Voyager [17]
have adopted more sophisticated prediction methods such as
LSTM’s but also novel methods to reduce the needed state,
such as their 2-level prediction structure.

IV. FUTURES

The memory wall still looms large for computer architec-
ture. At some point, methods like prefetching will reach their
achievable limit and alternate architectural mechanisms will be
needed, which is why memory-intensive computing has been
a ripe area of research and will likely remain so in the coming
decades.
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