
RETROSPECTIVE: Single-ISA Heterogeneous

Multi-Core Architectures for Multithreaded

Workload Performance

Rakesh Kumar Dean M. Tullsen Parthasarathy Ranganathan Norman P. Jouppi Keith I. Farkas

University of Illinois, Urbana-Champaign University of California, San Diego Google Google VMWare

I. Technical Backdrop

This work began in 2001 when multicore processors had just

started appearing. It was apparent to all a major technological

shift was happening.

Technological shifts typically represent tremendous oppor-

tunities to rethink the assumptions that shaped past products.

In our case (during a fruitful collaboration over a number

of years) we chose to question two assumptions, (1) that all

cores should be identical, and (2) that they should be distinct

and separable with no shared functional blocks. The work

we are discussing here is the result of questioning that first

assumption.

The earliest multicores were not aggressive – two cores

stamped onto the same die with no communication or

common logic between them. They soon became more truly

multicore, with communication between them, peripheral

logic (and eventually caches) shared, etc. But even in the early

2000’s, all roadmaps were clearly symmetric multiprocessing.

So why was this technological shift the right time to ques-

tion the "all cores identical" assumption? In a multiprocessor

composed of uniprocessor chips, particularly if you optimized

the cores to coexist in a heterogeneous design, it would require

two (or more) distinct fab runs to produce those chips, and

all the fixed costs associated with the production of each

chip. For a single-chip heterogeneous multicore, you could

introduce all the heterogeneity you wanted, and still require

only a single fab run to produce it. The economies of scale

no longer favored homogeneity.

At that time, the primary mechanism being deployed (or

even discussed in the literature) to save power for applications

that did not utilize the whole processor was clock gating. If

a 4-wide superscalar was getting an IPC of 0.5, we could

clock gate most of the ALUs and some other structures. But

the gains were limited to a small percentage of total power.

Besides, this was a time when power was already a first

class concern, voltage scaling had more or less stopped, and

static power (which clock gating could not target) was already

significant. It was clear that we needed a dramatically better

power reduction technique.

II. Single-ISA Heterogeneous Multicores

In Micro 2003, we introduced the idea of heterogeneous

multicores [1]. The primary gain was power efficiency. That

work showed that performance difference between a "modern",

heavyweight core and a much less aggressive core varied

dramatically, sometimes as much as 20X, other times almost

not at all. It varied by program, but also program phase. The

latter point is critical.

We made two assumptions in that work to minimize the

perceived barriers to adoption. One, we assumed we were

constrained to use pre-existing cores that had already been

designed and verified – this constrained us to a further

limitation that the cores tended to be monotonically increasing

in capability along all dimensions. The second assumption was

that the cores all shared a single ISA – because different phases

of execution of the same program often required dramatically

different core choices, the ability to adapt dynamically and

move quickly between cores was critical. We challenged the

first assumption over the next few years, looking at sets

of cores co-designed to work optimally together, and not

necessarily providing monotonically increasing resources [2].

We did not challenge the second assumption until almost a

decade later, and found that increased diversity (including

now the ISA) only magnified the advantages [4].

The subject of this retrospective, however, is the second

heterogeneous multicore paper. While the first had focused

heavily on power, we wanted to make a more clear perfor-

mance argument (given various caps on resources). Second,

we imagined a different use case – in the first paper, we

assumed one thread using one of the cores at a time and

the others all powered down. In this paper, we considered

the more common case of having many cores and many jobs

to run, and a scheduler having to figure out what jobs to

run on what cores (which now depends not only on the

characteristics of that job, but also those it is co-resident

with).

Our results showed that a single-ISA heterogeneous multi-

core architecture can provide significantly higher performance

in the same area than a conventional multi-core processor by

matching each application to a core that is just right for it. It

can provide high single-thread performance when thread-level

parallelism is low and high throughput when thread-level

parallelism is high. This provided another incentive to build

such processors and added to commercial and research impact.

We also presented several practical core assignment policies

that maximize efficiency.

Finally, we also chose to hit head-on an issue we had

1



ignored in the first paper due to our single-thread assumption

– that the largest cores were likely to include simultaneous

multithreading (SMT). This created much more messy (i.e.,

interesting) tradeoffs for the scheduler. In fact, this introduced

the first element of non-monotonicity that we would advocate

for in later papers. In the simple design of the first paper

(big, medium, and little cores), it was always clear which core

would give the best performance and which would give the

worst. But with big SMT cores and small non-SMT cores, it

was not at all clear whether a thread should be scheduled as

the second thread of the big core, or run alone on a small

core (particularly given the impact on the first thread).

III. Impact

By 2001, when this work began, there was a dire need

for a new way to save power. By that time, the technical

and commercial feasibility of putting multiple cores on

the same die had also been established. In that context,

when single-ISA heterogeneous multi-core processors were

proposed, the impact was near-immediate. Follow-on papers

from industry and academia appeared quickly, validating the

power reduction potential as well as energy-proportionality

benefits of such processors. Soon thereafter, a large number

of projects spawned on different aspects of heterogeneous

multi-core processor design, implementation, task scheduling,

and deployment. Within a few years, commercial processors

started appearing - first in the embedded and mobile domain

and then in the desktop/tablet domain - that were based on

the architecture.

For example, ARM big.LITTLE, introduced in 2011 to

support single-ISA heterogeneous multi-core architectures,

powers a significant fraction of popular mobile computing

devices (e.g., most Samsung Exynos-based devices). Apple

A12, A13, A14, etc., that power IPhones support single-ISA

heterogeneous multi-cores. Apple M1 and M2 that power

Macs and IPads are also single-ISA heterogeneous multi-core

processors. Intel’s Alder Lake and Raptor Lake processors

that power desktop and mobile devices use performance cores

and efficient cores in single-ISA heterogeneous multi-core

configuration. Several generations of nVidia’s Tegra cores,

starting with Tegra 3 introduced in 2001, adopted single-

ISA heterogeneous architecture. The list of systems based on

single-ISA heterogeneous multi-core architecture continues

to grow.

Of note is that most of the earlier commercial heterogeneous

designs followed our earliest examples, mixing and matching

pre-existing ARM cores. However, more varied heterogeneous

multi-core designs have started appearing. Of particular

interest, relative to this paper, is Intel’s Alder Lake and it’s

mixing of large SMT and smaller non-SMT cores – the same

architecture we considered in the latter part of this paper. As

a result, it is the first heterogeneous multi-core design with

non-obvious scheduling decisions even in the most simple

case – when scheduling purely for performance. In general,

we are seeing more evidence that the industry is willing to

custom design cores that complement each other, rather than

mixing previous designs optimized to be the only core type.

IV. The future of heterogeneous architectures

We think that customization of cores will continue to

increase. We have done a number of studies that showed

that in a world of infinite design choices, and running all

permutations of a large set of applications, the best multicore

design was (of course) never homogeneous, but also rarely

monotonic (ie, small, medium, big). Rather, the best designs

were typically much more mixed – e.g., a wide in-order core

(great for ILP intensive workloads) and a narrow, out-of-order

core (better for memory-intensive workloads), etc. We expect

non-monotonic heterogeneous multi-cores to appear at some

point.

There are PPACT (power-performance-area-cost-time)

tradeoffs between different kinds of heterogeneity - genera-

tional (i.e., integrating cores from different generation), market

segment-based (i.e., integrating desktop and embedded CPU,

etc.), and custom-designed (e.g., non-monotonic). Similarly,

there are tradeoffs between single-ISA and multi-ISA hetero-

geneity. There are also tradeoffs between different levels of

heterogeneity - e.g., two types of cores (which is what all

current heterogeneous multicore products have) vs more core

types. We expect different heterogeneity design points to be

used in different scenarios.

Single-ISA heterogeneous multi-core architectures have not

yet made their way to servers and datacenters. We expect

the energy-proportionality benefits of these architectures to

also push them into these domains.

Current heterogeneous multi-cores use fairly simple

scheduling policies, even as the cores become more complex

and varied. For example, Intel Thread Director uses only a

small number of parameters to decide on the thread schedule.

We think that OS scheduling [3] and corresponding hardware

support will get much richer going forward.

The emergence and increased adoption of chiplets may give

further impetus to heterogeneous multi-core architectures

since it may become easier to mix-and-match cores to suit

workload needs.

Overall, we would not be surprised if heterogeneous multi-

core architectures become and remain the mainstay of all

processors for at least the next decade.

References

[1] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen, “Single-

isa heterogeneous multi-core architectures: the potential for processor

power reduction,” in Proceedings. 36th Annual IEEE/ACM International
Symposium on Microarchitecture, 2003. MICRO-36., 2003, pp. 81–92.

[2] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture optimization

for heterogeneous chip multiprocessors,” in 2006 International Conference
on Parallel Architectures and Compilation Techniques (PACT), 2006, pp.
23–32.

[3] J. C. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and V. Talwar,

“Using asymmetric single-isa cmps to save energy on operating systems,”

IEEE Micro, vol. 28, no. 3, pp. 26–41, 2008.
[4] A. Venkat and D. M. Tullsen, “Harnessing isa diversity: Design of a

heterogeneous-isa chip multiprocessor,” in 2014 ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture (ISCA), 2014, pp. 121–132.

2


