
RETROSPECTIVE: Adaptive Insertion Policies for
High-Performance Caching

Moinuddin Qureshi
⊕

, Aamer Jaleel†, Yale Patt‡, Simon C. Steely Jr.§, Joel Emer†∗⊕
Georgia Tech †Nvidia ‡The University of Texas at Austin §Intel ∗MIT

This ISCA-2007 paper was the culmination of more than
a year of research by two teams, initially performed inde-
pendently within the VSSAD advanced R&D group at Intel
and the University of Texas at Austin, and then later done
in collaboration. One of the hallmarks of this paper is the
simplicity of the proposed solution, however, that belies the
several dozens of ideas (and millions of simulations) that
were explored and discarded in search of a simpler and more
effective solution. In this retrospective, we hope to share the
context and backdrop in which this work was done, the core
contributions, and the impact and legacy of this paper.

I. THE BACKDROP

During this work, Moin Qureshi was a graduate student at
UT Austin, working under the advisement of Prof. Yale Patt.
His thesis work was on high-performance caching, and some
of his work prior to this paper included MLP-Aware Cache
Replacement (which introduced the concept of dynamic set
sampling), and Utility-Based Cache Partitioning (UCP, which
used dynamic set-sampling to learn utility curves). As part
of his graduate work, he was investigating improved cache
management for L2 caches, especially the problem of lines
getting evicted without any reuse. In Summer 2006, he was
an intern at Intel Portland, looking at L2 replacement policies.

In 2005, during his summer internship with VSSAD, Aamer
Jaleel had developed a Pin-based workload characterization
tool, called CMP$im (resulting in an HPCA-2006 paper,
which looked at cache behavior of bio-informatics workloads).
In subsequent years, CMP$im would go on to become the
workhorse for developing state-of-the-art cache management
schemes. Aamer graduated in 2005 and joined VSSAD full-
time. As part of the Dalton cache research group meetings,
Aamer (along with Simon Steely and Joel Emer) was using
CMP$im to study cache reuse behavior and noted poor reuse
at the LLC cache. Their team had started to look at solutions
to reduce cache miss rates by exploiting variation in reuse.

The discussion and collaboration between the two teams
started during Moin’s 2006 summer internship at Intel (Port-
land) when it was clear that both teams were independently
working on similar problems. While the solutions were still
not clear during the summer, an interesting event that hap-
pened during this internship was a presentation from us to
the Intel Nehalem design team. Our presentation was with
the message that some applications have low locality, and
for such applications even random can beat LRU, so why
not have two policies (LRU and Random) and select the

policy dynamically based on set-sampling (having an extra
tag directory that simulated Random for a few sampled sets).
While the idea of adaptive replacement was received well,
Andy Glew had a strong criticism that adaptive replacement
should be for free (without any auxiliary tags) as extra tag
structures require verification, testing, and floorplanning and
such changes are not appealing for commercial adoption. We
had argued, vociferously and naively at that time, that such a
zero-overhead solution would be virtually impossible, as we
need some extra state for doing the selection.

II. THE PROBLEM

The basic problem solved by this paper is about cache
replacement policies. However, the context in which we looked
at the problem was new. Until then, much of the work on
cache replacement (for almost 25 years) had looked only at
L1 caches, and the consensus at that time was that LRU
was pretty good (or good enough), such that new cache
replacement policies were not warranted. However, cache sizes
were increasing and multi-level cache hierarchies had become
common by the early 2000s. Furthermore, cache replacement
policies were similar for L1 and L2.

Our work noted that there is a huge locality difference
between L1 access stream and L2 (LLC) access stream, as
the L1 caches filter away the temporal locality. If a line has
high locality, it stays in L1 and offers lots of hits, but these hits
do not count toward L2 hit-rate. Furthermore, spatial patterns
(such as reading consecutive words) result in high L1 hit rates,
but do not contribute to L2 hits, as the L2 linesize tends to
be identical to L1, so spatial hits are not visible to L1. This
filtering of locality by L1 results in poor reuse of L2 lines.

We defined a term Dead on Arrival (DoA) lines as the lines
that are brought into the L2 and evicted without being accessed
again. We showed that, with an LRU policy, an overwhelming
majority (almost 70%) of the lines installed in the L2 cache
are DoA lines. Thus, much of the L2 space is used for lines
that do not ever contribute to cache hits. By analyzing the
code for memory-intensive workloads (such as mcf, art, and
health), we showed that the main cause of DoA lines is that the
working set of frequently used lines is larger than the cache
size, which causes thrashing and poor reuse.

The goal of our paper was to develop replacement policies
that are tailored to exploit the filtered locality at the L2 cache
and to have a simple and practical solution that can be adopted
in commercial implementation.

1

III. THE CONTRIBUTIONS

There were several cache replacement policies (exploiting
line-level reuse, PC-based, frequency-based, adaptivity be-
tween LRU and Random, lookahead-based, or genetic learning
based) explored during the course of this work. However, most
of these solutions were either too complex and/or storage-
intensive, or the performance benefit was limited. By some
of our rough estimates at that time, there were more than a
million simulation runs performed in the course of this study.

Key Contribution-1: Insertion Policy: The key insight in
this work was that when the working set is greater than the
cache size, simply preserving some part of the working set
is sufficient to improve the cache hit rate (the effective hit-
rate is quite close to optimal for a circular reference pattern).
Preservation of the working set can be provided by simply
changing the place where the incoming line is placed (note
that the conventional LRU replacement policy places the line
at the MRU position). The first main contribution of the work
was introducing the notion of insertion policy as a means
to improve cache performance. Two policies, LRU Insertion
Policy (LIP, which places incoming lines to LRU position) and
Bimodal Insertion Policy (BIP, which places almost all of the
incoming lines in LRU but randomly places a small fraction
of lines in MRU position). Both LIP and BIP are thrashing
resistant, with BIP more adaptable to a changing working set.

Key Contribution-2: Set Dueling: Our initial hunch was
to use dynamic set sampling (using a separate auxiliary tag
directory) to choose between BIP and LRU. However, this
would suffer from the same implementation constraints that
Andy Glew had mentioned (the extra directory needs to be
designed, verified, tested, and incorporated in the floorplan).
The key insight that enabled the virtually zero overhead
solution was to let the sets duel for the two policies, on a
small number of sampled sets, and use that winner as the
policy for the remaining follower sets. This scheme requires
just a single saturating counter (two bytes) to track which of
the two policies incurs more misses and the most-significant
bit (MSB) indicates the winner. While cache miss rate varies
across sets, even for the same policy, we showed (with both an
analytical model and experimentation) that once we have 32-
64 sampled sets, chosen randomly, then the scheme is able
to identify the stronger policy, as long as there is a non-
negligible difference in miss rate between the two policies (the
cases where the difference is negligible is moot for practical
scenarios as both policies would give similar performance).
Simon Steely is responsible for the cool name of Set Dueling,
much better than the rather boring term In-Cache Dynamic Set
Sampling (IDSS) we had in the submitted version.

Our proposed design of Dynamic Insertion Policy (DIP)
used Set Dueling to choose between BIP and LRU. Our
results showed that DIP significantly bridged the gap between
LRU and OPT. As BIP requires negligible changes (simply
skip the update to MRU for the incoming line), and Set
Dueling required a single counter, the simplicity of DIP made
it appealing for commercial adoption.

IV. THE INITIAL RECEPTION AND IMPACT

When the results of DIP first arrived, we knew right away
that these ideas would get adopted in industry and academia.
The ideas started to influence industrial designs within a
few months of publication. At Intel, Aamer shared the ideas
with the Ivy Bridge design team and evaluated DIP directly
within the Ivy Bridge performance model. There were some
challenges along the way, specifically associated with studying
a dynamic policy in a detailed product level performance
model that only studied a small snippet of total application
execution. Eventually, Ivy Bridge adopted the ”Adaptive Fill
Policy” [2] and academics reverse engineered Ivy Bridge’s
cache to identify ”leader” sets and ”follower” sets [5].

Moin graduated and joined IBM Research in Aug 2007.
He soon became aware of a problem in upcoming Power-7
processors, which had private 4MB L3 per core but no means
to share the aggregated 32MB capacity across the 8 cores. He
suggested the use of Set Dueling to learn the sharing decision
at runtime (which cores should spill and which should receive).
Set-Dueling based capacity sharing was immediately adopted
in Power-7 processors [1]. A variation of this scheme, Adaptive
Spill Receive (ASR) [4], was published at HPCA-2009.

The DIP proposal converges on a single binary decision
(BIP or LRU) globally for the entire cache. Greater per-
formance can be obtained if each core/thread could have
an independent binary decision (BIP or LRU). During Fall
2007, the Intel team, lead by Aamer, investigated such a
generalization of DIP for multi-core processors and developed
Thread Aware DIP (TADIP) [3]. TADIP required just one
counter per core and performed similar to or better than UCP.

V. THE LEGACY

While DIP and variations found adoption immediately,
future research in cache replacement (such as RRIP, SHiP,
etc.) developed even more effective schemes, albeit at higher
hardware overheads. Set Dueling continues to be used in both
academic and industrial designs for dynamic cache decisions.
Owing to the simplicity, the umbrella of solutions DIP, TADIP,
and ASR are often included in graduate architecture courses
to teach cache management. As of now, the paper has 942
citations (second highest of all ISCA-2007 papers).

One of the main learning from this paper was that simplicity
is possible, however, it takes a lot of effort and understanding
to develop a simple and effective solution. This journey is
worth it though, as simple and effective ideas tend to move
the needle, get adopted, and stand the test of time.

REFERENCES

[1] “Under the hood: Of power7 processor.” [URL]: http://gibsonnet.net/aix/
ibm/systems power software i perfmgmt underthehood.pdf

[2] S. Jahagirdar et al., “Power management of the third generation Intel
Core micro architecture formerly codenamed Ivy Bridge,” in HC-2012.

[3] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, and J. Emer,
“Adaptive insertion policies for managing shared caches,” in PACT-2008.

[4] M. K. Qureshi, “Adaptive spill-receive for robust high-performance
caching in cmps,” in HPCA-2009.

[5] H. Wong, “Intel Ivy Bridge cache replacement policy,” Jan 2013. [URL]:
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/

2

http://gibsonnet.net/aix/ibm/systems_power_software_i_perfmgmt_underthehood.pdf
http://gibsonnet.net/aix/ibm/systems_power_software_i_perfmgmt_underthehood.pdf
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/

	The Backdrop
	The Problem
	The Contributions
	The Initial Reception and Impact
	The Legacy
	References

