
A Retrospective on:
A “Flight Data Recorder” for Enabling Full-system

Multiprocessor Deterministic Replay
Min Xu1, Rastislav Bodik2, Mark D. Hill3

1Unaffiliated 2Google & University of Washington 3Microsoft & University of Wisconsin-Madison

I. CONTEXT

During 2001-02, junior graduate student Min Xu
was searching for a problem to work on for his PhD.
With his advisors, Prof. Hill (computer architecture)
and Prof. Bodik (compilers), we wanted a problem
that people would care about if we solved it and we
had some talent toward solving it.
We focused on changes that might expose new

opportunities, as Hill later articulated [1]. In the early
2000s, we saw that three changes were underway:
1) Multicore processors were replacing uniprocessors,
implying to us that multithreaded programming would become
more important.

2) A new class of programming tools were appearing,
including race detectors and reverse-execution debuggers. These
tools consumed considerable compute cycles to provide
debugging insights. It implied that a programmer's time was
increasingly more valuable than compute cycles.

3) Moore’s Law was providing bountiful more transistors,
leading us to expect that some transistors might be available for
“value adds” beyond improving processor performance.
We noted that one value that multicore processors

removed was deterministic debugging. Since the
dawn of computing, (single-threaded) programs could
be debugged using print statements or a debugger -
deterministically. Programs with nondeterministic
inputs could be debugged by recording the timing and
content of inputs. However, multithreaded programs
are nondeterministic due to the interactions of threads
in shared memory leading to “Heisenbugs” that may
or may not be reproducible. Software debuggers were
practical only for programs without data races [2];
more general software record & replay approaches
appeared to have prohibitive overhead. We thus
hypothesized that hardware might help.

II. THE WORK: FLIGHT DATA RECORDER (FDR)

A. High level idea and insights
The high level idea was adding modest hardware to

collect a (distributed) data log to record sufficient
multithreaded execution information to enable a
deterministic replay (either in software or hardware)
of the original execution regardless of data races. We
called our hardware component a flight data
recorder (FDR). Like the black box on airplanes,
FDR allows one to reconstruct what happened. FDR
proved to be a memorable name.
Four insights aided the development of FDR. First,

threads only interact on multiprocessor cache
coherence events1, not all loads and stores. This is
fortunate as we were experts on coherence. Second,
conceiving FDR required us to think “globally”
among processor cores, not just within a core as was
common for hardware structures, and reason about
partial orders amongst instructions within a thread
and between threads. We have experiences with both
from our prior memory consistency model work [3].
Third, like the second at a different level, we focused
on understanding the global temporal behavior as in
our critical path work [4]. Fourth, local hardware
mechanisms could be used to enable a seemingly
sophisticated global algorithm. In particular, with
sufficient bookkeeping, FDR hardware did not need
to explicitly instantiate graph data structure as
common in some software schemes.

1 We ignore thread interleaving on the same processor core
because they can be replayed with determinism on OS interrupts
and schedulers.



B. FDR for sequential consistency (SC) model
The core of the FDR paper is about how to

augment a multiprocessor system to record minimal
log data to capture the total order of all thread’s
memory accesses, as permitted by the SC memory
model. This order is sufficient to enable deterministic
replay. FDR’s key insight is that memory accesses
from different threads interact primarily via cache
coherence messages. To this end, FDR (a) adds
modest information to coherence messages, (b) uses a
transitivity reduction algorithm to avoid recording
all-but-a-few dependencies between threads and (c)
adds a small amount of hardware to compute such
dependencies in a sufficient but not absolutely
minimal fashion.
C. FDR for total store order (TSO) consistency model
Later we extended FDR to the TSO memory

consistency model and improved its logging
algorithm by introducing artificial but correct
dependency arcs to further reduce the log size [5].
For TSO, we use a hybrid dependency+value
recording approach to help the replay process to
recreate the original program behavior with only a
partial order between threads and a few additional
values needed by out-of-order load instructions. Both
works are summarized in a Top Picks paper [6].

III. REFLECTIONS IN 2023
Academic computer architecture work seeks impact

on industrial products, especially hardware, and
influence on the future literature. To the best of our
knowledge, FDR’s impact on multicore processor
products has been minimal so far. We suspect that
this is in part because its value proposition for those
designing and selling multicore chips is indirect: the
chip vendors sell to system vendors who sell to
customers who buy applications written by
programmers whose debugging could be aided by
FDR. This situation could change as cloud service
providers design their own processors to run their
own software. In a hardware/software codesign
context, we can imagine a future FDR-like hardware
that implements deterministic record and replay for

either debugging or fault tolerance for extreme
mission critical applications.
FDR’s literature impact has been more substantial,

as demonstrated by over 500 citations2, in part
because FDR showed that efficient hardware support
for record-replay was possible. We are impressed by
the creativity of subsequent work and discuss a small
subset here. DeLorean [7] and Rerun [8] leveraged
transactional memory concepts to reduce both
hardware and log size. DMP [9] and Calvin [10] went
beyond deterministic replay to make all executions
deterministic. ODR [11] creatively points out that
programmers ultimately care only about the output
values. ODR uses this insight to shift cost from
recording to replay time by using a solver to
reconstruct necessary information not recorded.
Finally, more personally, one of us (Xu), who has

spent the last 20 years in the industry, appreciates the
profound impact of working on FDR. In particular,
FDR showed the importance of better algorithms to
make seemingly impossible things possible.

REFERENCES

[1] Mark Hill, “Increasing Your Research Impact”, Computer Architecture
Today, https://www.sigarch.org/increasing-your-research-impact/,
Aug 12, 2019.

[2] Michiel Ronsse, Koen De Bosschere. “Recplay: a fully integrated
practical record/replay system”, ACM Trans. Comput. Syst.,
17(2):133-152, 1999

[3] Sarita V. Adve, Mark D. Hill, “Weak Ordering - A New Definition”, in
Proc. ISCA’90, p.2-14

[4] Brian Fields, Shai Rubin, Rastislav Bodik, “Focus processor policies via
critical path prediction”, in Proc. ISCA’01, p74-85

[5] Min Xu, Rastislav Bodik, Mark D. Hill, “A regulated transitive reduction
(RTR) for longer memory race recording”, in Proc. ASPLOS XII, p49-60

[6] Min Xu, Rastislav Bodik and Mark D. Hill, "A Hardware Memory Race
Recorder for Deterministic Replay," in IEEE Micro, vol. 27, no. 1, p48-55

[7] Pablo Montesinos, Luis Ceze, Josep Torrellas, “DeLorean: recording and
deterministically replaying shared-memory multiprocessor execution
efficiently”, in Proc. ISCA’08, p289-300

[8] Derek R. Hower, Mark D. Hill, “Rerun: exploiting episodes for
lightweight memory race recording”, in Proc. ISCA’08, p256-276

[9] Joseph Devietti, Brandon Lucia, Luis Ceze, Mark Oskin, “DMP:
deterministic shared memory multiprocessing”, in Proc. ASPLOS XIV,
p85-96

[10] Derek Hower, Polina Dudnik, Mark D. Hill, David A. Wood, “Calvin:
Deterministic or not? Free will to choose”, in Proc. HPCA’01, p333-344

[11] Guatam Altekar, Ion Stoica, “ODR: output-deterministic replay for
multicore debugging”, in Proc. SOSP’09, p193-206

2 Over 500 papers citing FDR per Google Scholar:
https://scholar.google.com/scholar?oi=bibs&hl=en&cites=123333
04558259539546&as_sdt=5

https://www.sigarch.org/increasing-your-research-impact/
https://scholar.google.com/scholar?oi=bibs&hl=en&cites=12333304558259539546&as_sdt=5
https://scholar.google.com/scholar?oi=bibs&hl=en&cites=12333304558259539546&as_sdt=5

