RETROSPECTIVE: Transactional Memory
Coherence and Consistency

Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben Hertzberg,
Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, Kunle Olukotun

Stanford University

1. MOTIVATION

In the early 2000s, the scaling limitations of single-core
chips were clear. With IBM, Intel, and Sun Microsystems
working on their first multi-core chips, thread-level parallelism
was quickly emerging as a key method for scalable perfor-
mance in future systems of all sizes. Within this context,
the Transactional Coherence and Consistency (TCC) project
aimed to address two key challenges.

The difficulty of parallel programming: The cache-coherent,
shared-memory model supported by multi-core chips makes
it easy to communicate between concurrent threads. Never-
theless, programmers have to manage synchronization when
multiple threads access potentially shared data, using primi-
tives such as locks, mutexes, and condition variables. Coarse-
grain synchronization often leads to reduced parallelism due to
lock contention. Fine-grain synchronization is error-prone as it
can lead to races, deadlocks, or livelocks. Finally, performance
tuning is difficult as bottlenecks are linked to low level events,
such as coherence misses and false sharing, which are not
intuitive for most programmers.

The complexity of cache coherence and memory consis-
tency: The hardware implementation of cache coherence in-
volves tracking numerous pending events at the granularity
of cache lines and reaching consensus on ownership across
a wide range of corner cases. The hardware implementation
of memory consistency involves tracking individual loads and
stores as they are buffered and reordered throughout the
system. Correct and performant implementations in systems
with tens of cores are challenging. Relaxed consistency models
are often the source of software bugs as many programmers
do not understand the subtleties of hardware ordering rules.

II. THE TCC APPROACH

The TCC project embraced transactional memory (TM) [8]
as the key abstraction for managing parallelism. Transactional
memory allows parallel threads to execute small chunks of
code (transactions) in an atomic and isolated manner. All
instructions in a transaction either complete as an atomic unit
and commit their updates to shared memory, or are rolled back
and re-executed. Concurrent transactions are isolated from
each others” memory accesses, as if all transactions executed
in some sequential order without any overlapping.

Unlike earlier proposals that used transactions sporadically
to replace short lock sections, TCC proposed to make trans-

actions pervasive. Each parallel thread becomes a sequence
of transactions and there is no code execution outside of an
atomic transaction. Hence, the motto of the TCC project was
“all transactions, all the time”.

For programmers, pervasive use of transactions means that
they no longer need to struggle with the granularity of synchro-
nization in their parallel code. They simply mark transaction
boundaries where their code naturally completes tasks that
should update shared memory, for example at the end of
purchase tasks on an e-commerce site. Transactions across
threads can be unordered if the programmer starts with a
parallel algorithm, or explicitly ordered if the programmer
starts with a sequential algorithm. Transactions can be as
coarse-grain as needed and programmers do not have to
guarantee that they are independent. The hardware will roll
back and re-execute any concurrent transactions that have true
dependencies (read-after-write) on shared data. Performance
feedback is provided at the level of transactions (program
tasks) and shared memory variables.

At the hardware level, what made TCC fundamentally
different from previous and later work on this topic is that it
replaced the conventional coherence protocol and consistency
model with transactions, rather than layering transactions
on top existing coherence and consistency techniques. TCC
enforces cache coherence at the boundary of transactions,
updating shared memory at once for all cache lines written
within a transaction. TCC enforces memory consistency at
the boundaries of transactions, ensuring all processor cores
and the threads they execute perceive the same transaction
commit order. Both coherence and consistency become simpler
and coarser-grain (bulk) operations that benefit from the high
communication bandwidth available in multi-core chips.

The hardware implementation we proposed used lazy buffer-
ing and optimistic concurrency control. Each core privately
tracked the set of addresses read and written by the pend-
ing transaction. The write set is sent to other cores lazily
only when the transaction is ready to commit. All cores
concurrently execute transactions, optimistically assuming that
no true dependencies exist. When a transaction commits,
all other pending transactions compare their read set to the
write set of the committing transaction to validate that the
optimism was correct. If not, the pending transaction with a
true dependency to the committing one is rolled back and re-
executes. A core rolls back its pending transaction by purging



the transaction read and write set from its private caches. The
original TCC proposal allowed one transaction commit at the
time, but implemented optimizations such as double buffering
to maintain high throughput. The paper showed that the private
caches in processor cores and the bandwidth available in multi-
core chips were sufficient to support the pervasive use of
transactions for a wide range of popular benchmarks.

III. THE EVOLUTION OF THE TCC PROJECT

With transactions as the only abstraction for managing
parallelism, the TCC project had to explore their use and
impact across the system stack. Over seven years, we pushed
the boundaries of TM technology across several dimensions.

Hardware: We defined robust ISA-level semantics so that
TM supports the breadth of functionality in programming
languages and operating systems [10]. We designed scalable
and cost effective TCC hardware and techniques to validate
its correctness [5], [11]. We also used FPGAs to build two
full-system TCC prototypes [4], [13].

Programming: We defined transactional programming for
Java and OpenMP [1], [2], as well as optimized libraries and
collectives [3]. We developed two popular TM benchmark
suites and contacted several application studies [12].

Systems: We developed virtualization schemes for TCC
hardware [6] and showcased how to use TM to build novel
profiling, debugging, and security tools [7]

IV. LESSONS FROM THE TCC PROJECT

The three key lessons from the TCC project were:

o Focus on the programmers: The primary focus for TCC
and other TM projects was not performance gains over
conventional approaches. Their goal was to help non-
expert programmers develop, debug, tune, and scale par-
allel programs that make the most of emerging multi-
core chips. Ease-of-use can be transformational for any
technology.

o The benefits of a clean slate: In a community that focuses
heavily on backwards compatibility, the TCC project
took a clean slate approach towards harwdare support
for parallelism. This allowed us to simplify both parallel
programming and parallel hardware. An evolutionary
approach would add significant hardware or software
complexity.

o Explore the full stack: To get practical value from a clean
slate hardware approach, we must think of the whole
system stack — languages, libraries, compilers, debuggers,
and operating systems. We need to address the challenges
and exploit the opportunities at each layer.

These lessons are applicable to any project developing
parallel architectures. In 2023, a main focus of our community
is accelerators for machine learning. These accelerators take
a clean slate approach towards parallelism and efficiency. As
the key hardware approaches for fast matrix operations are
now known, we see the focus gradually shifting towards ease-
of-use and system issues such as compilation, partitioning,
scheduling, memory management, communication, and tuning.

At this point, the most popular ML hardware (GPUs) is not
necessarily the fastest but is definitely the easiest to program
and build large-scale hardware and software systems with.

V. THE FUTURE OF TRANSACTIONAL MEMORY

The encouraging results from TM research in 2000s mo-
tivated IBM, Intel, and Arm to introduce transactional ex-
tensions in their commercial ISAs. IBM and Intel produced
multi-core chips that implemented TM extensions such as
IBM Power8 and Power9 and Intel Skylake. IBM later dis-
continued TM support. Intel did the same for client chips,
which now include Atom cores that never supported TM.
Intel still supports TM in server chips such as chips in
the Sapphire Rapids line. While TM has some important
uses, its adoption across hardware and software projects is
not as widespread as we expected. Some reasons frequently
quoted are hardware implementation complexity, programming
and tuning difficulties, and unexpected interactions with side-
channel leaks in multi-threaded cores. The commercial TM
implementations are layered on top of the conventional and
already complex coherence and consistency mechanisms. They
also require programmers to put significant effort in defining
small transactions that fit within the limited hardware support.
In a sense, these implementations take a different approach
from the TCC project that had hardware simplicity and ease
of programming as its main goals.

Given the success of atomic transactions with concurrency
management in databases, it is possible that transactional
memory will make a comeback in the future. Several hardware
features that we now consider essential, such as wide vector
instructions, took a few tries to find their market fit. For the
moment, ideas similar to those of TCC are popular in dis-
tributed systems. Researchers argue that all tasks that interact
with shared state in scale-out services should execute as atomic
transactions supported by fast distributed databases [9].

REFERENCES

[1] W. Baek ef al., “The OpenTM Transactional Application Programming
Interface,” in PACT’16, 2007.

[2] B. D. Carlstrom et al., “The Atomos Transactional Programming Lan-
guage,” in PLDI’27, 2006.

[3] B. D. Carlstrom et al., “Transactional Collection Classes,” in PPoPP’12,
2007.

[4] J. Casper et al., “Hardware Acceleration of Transactional Memory on
Commodity Systems,” in ASPLOS’16, 2011.

[5] H. Chafi et al., “A Scalable, Non-Blocking Approach to Transactional
Memory,” in HPCA’13, 2007.

[6] J. Chung et al., “Tradeoffs in Transactional Memory Virtualization,” in
ASPLOS’12, 2006.

[7] J. Chung et al., “Thread-safe dynamic binary translation using transac-
tional memory,” in HPCA’14, 2008.

[8] M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures,” in ISCA’20, 1993.

[9]1 Q. Li et al., “A Progress Report on DBOS: A Database-oriented

Operating System,” in CIDR’12, 2022.

A. McDonald et al., “Architectural Semantics for Practical Transactional

Memory,” in ISCA’33, 2006.

C. C. Minh et al., “An Effective Hybrid Transactional Memory System

with Strong Isolation Guarantees,” in ISCA’34, 2007.

C. C. Minh et al., “STAMP: Stanford Transactional Applications for

Multi-Processing,” in IISWC’08), 2008.

[13] N. Njoroge et al., “ATLAS: A Chip-Multiprocessor with Transactional

Memory Support,” in DATE’07, 2007.

[10]
(11]

[12]



