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I. BACKGROUND AND MOTIVATION

When we began this work in 2018, deep neural networks
(DNNs) had gained significant popularity, and researchers
were actively exploring innovative architectural designs to
achieve energy efficiency. To address the intensive computing
and memory demands of DNNs, several studies proposed
computing-in-memory (CIM) designs to accelerate DNN infer-
ence. Particularly, in ISCA 2016, two papers [O9][O40] first
introduced this idea to the computer architecture community.
These pioneering studies suggested leveraging the inherent
matrix-vector multiplication computing capability of emerging
memristor devices, such as resistive random access memory
(ReRAM), to overcome the memory wall challenge and en-
able highly parallel computations. The revisit of the CIM
concept [1], along with its successful combination with AI
workloads, has opened up a prominent research domain.

Despite memristor-based CIM showing promising potential
for AI acceleration, there remain challenges to overcome in
practice. First, the non-ideality of memristor devices makes it
difficult for an analog-to-digital converter (ADC) to accurately
read out the matrix-vector multiplication results on bitlines.
Our analysis, conducted through DL-RSIM [O31] (a simu-
lation framework we developed), revealed that the inference
accuracy drops considerably when too many wordlines are
activated concurrently due to the accumulated per-cell current
deviation (e.g., 16 wordlines, even with technology advances
enabling cell variation reduction). Second, deploying a high-
frequency ADC with high bit-resolution to enable the entire
memristor crossbar array to operate in one cycle leads to
significant power and area overhead.

Considering the non-ideality of memristor devices and the
overheads associated with ADC, practical matrix-vector mul-
tiplication must proceed at a smaller granularity in memristor-
based CIM. This was demonstrated by the state-of-the-art
ReRAM macro designed for DNN acceleration at that time,
which operated only a 9x8 sub-region in a crossbar array per
cycle [O6]. However, when we developed our idea, existing
designs published in the computer architecture community
overlooked these hardware constraints and assumed that the
entire crossbar array could be operated in a single cycle. We
were the first to recognize that it is more practical to operate
only a smaller section of a crossbar array in a single cycle, and

we defined this small section that can be operated per cycle
as the Operation Unit (OU).

Although the OU-based architecture is more practical, it
is not necessarily better than the over-idealized one that
operates an entire crossbar array in a single cycle when
considering the impact on performance. In comparison to the
over-idealized architecture, an OU-based design benefits from
better accuracy and lower resolution requirements on ADCs,
as fewer wordlines are activated per cycle. However, while
an OU-based design could potentially achieve a shorter cycle
time by adopting lower-resolution ADCs with faster sensing
speed, it also requires more cycles to complete the same
amount of computations due to limited wordline and bitline-
level parallelism. Consequently, the significantly increased
number of cycles overshadows the advantage of a shorter
cycle time, making an OU-based design likely to deliver
lower performance than an over-idealized counterpart if no
optimization mechanism is applied to reduce computations.

The comparison between the OU-based design and the over-
idealized counterpart involves a tradeoff between accuracy and
performance. This motivates us to explore whether we can
resolve this dilemma through architectural design, and the
collaboration between academics and industry enables us to
derive a practical yet efficient solution. During our investiga-
tion, we discovered that the OU-based architecture naturally
allows the exploitation of fine-grained sparsity to skip more
redundant computations, as each OU operates independently.
By effectively harnessing the fine-grained sparsity offered
by the OU-based design, it becomes possible to achieve a
practical design with satisfactory inference accuracy while
attaining comparable performance and energy efficiency with
the over-idealized counterpart. To accomplish this objective,
we propose the Sparse ReRAM Engine, which stands as one
of the pioneering works that avoids overlooking the impact
of hardware constraints and aims to develop a practical yet
energy-efficient memristor-based CIM design.

II. SPARSE RERAM ENGINE

The Sparse ReRAM Engine is the first practical memristor-
based CIM design that jointly exploits weight and activation
sparsity to enable energy-efficient DNN inference while miti-
gating accuracy loss caused by non-ideal devices/circuits. Our
key findings and innovations include the following:
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Practical OU-based CIM. Unlike prior over-idealized designs
that overlook the overhead of ADC and the accumulated effect
of per-cell current deviation on inference accuracy, we were
the first to recognize the practicality of operating only a
smaller section of a crossbar array (OU) instead of the entire
array in one cycle. Additionally, we emphasized the need for
architectural solutions to reduce computations in OU-based
designs, overcoming the limitation of computation parallelism
that hinders their potential to achieve comparable or even
better energy efficiency than the over-idealized counterpart.
OU-level fine-grained sparsity exploitation. In an over-
idealized design, redundant computations can only be skipped
when the entire wordline/bitline cells contain zeros or when
the input bits to the crossbar array are all zeros in the same
cycle due to the tightly coupled crossbar structure. However,
we discovered that the OU-based architecture naturally en-
ables the exploitation of fine-grained sparsity, as each OU is
operated independently. This characteristic allows for the skip-
ping of more zeros, creating new performance improvement
opportunities for OU-based designs.
Joint exploitation of weight and activation sparsity. To
effectively take advantage of the fine-grained sparsity offered
by the OU-based design, we proposed an innovative method
to jointly exploit weight and activation sparsity. In an OU-
based design, weight compression can be performed in either
the row or column dimension. For activation compression,
instead of simply skipping an OU computation when inputs to
all the wordlines of the OU are zeros, we proposed forming
an OU unit at runtime to activate non-contiguous wordlines
with non-zero input values in the same cycle. This method
works perfectly with row-wise weight compression, enabling
the simultaneous exploration of weight and activation sparsity.

III. LOOKING BACK

The design of the Sparse ReRAM Engine has inspired a
new direction in neural network compression, with the goal
of maximizing the energy efficiency improvements achievable
through fine-grained operations in practical designs. Several
studies have been conducted to develop pruning algorithms
that are co-designed with the underlying practical architecture,
allowing for better exploitation of fine-grained sparsity. One
such study by Yuan et al. [2] introduced a framework for
generating memristor-based CIM-friendly DNN models. They
employed a fragment polarization technique to address the
issue of signed weight representation and combined it with
structured pruning and quantization methods. In a similar vein,
Yang et al. [3] utilized reinforcement learning to automatically
determine the pruning policy and quantization bit-width for
the OU-based CIM architecture. Besides eliminating compu-
tations with zero-valued weights and inputs, researchers have
also explored opportunities for sharing computed results with
repetitive weight [4] and input patterns [5] at OU or finer
levels, aiming to reduce redundant computations.

As one of the pioneering works aiming to develop a practical
yet energy-efficient memristor-based CIM design, the Sparse
ReRAM Engine has garnered significant attention from the

computer architecture community, emphasizing the importance
of addressing the negative impacts of non-ideal devices/circuits
and ADC overheads. Since its publication in 2019, researchers
have proposed various methods to overcome these hardware
constraints. One potential approach is redesigning dataflow
and weight encoding. For instance, Chou et al. [6] introduced
an architecture that connects each ReRAM CIM array with a
buffer ReRAM array, utilizing an analog summation scheme
to extend processing in the analog domain and reduce the re-
quired analog-digital conversions. Andrulis et al. [7] designed
a weight encoding method enabling an adaptive architecture to
use efficient low-resolution ADCs without retraining. Another
strategy is employing energy-efficient circuit interfaces like
time-domain interfaces with analog local buffers to reduce
analog-digital conversion overheads [8].

IV. CONCLUSION

In the big data era, the need to efficiently process vast
amounts of data drives a disruptive change in computing
platform design. Bringing computation closer to data with a
memory-centric approach is an attractive solution to mitigate
costly data movement across memory channels. The inherent
computing-in-memory capability of emerging memory tech-
nologies allows for this paradigm shift. However, challenges
arise due to the non-ideality of current devices/circuits and
analog-digital conversion overheads, making practical imple-
mentation difficult. The Sparse ReRAM Engine demonstrates
how leveraging fine-grained sparsity in neural networks can
achieve a reliable and energy-efficient practical design. We
anticipate that the key design concept used in the Sparse
ReRAM Engine, which tailors the system to practical hardware
configurations and exploits software features to accommodate
hardware constraints, will play a crucial role in accelerating
the adoption of memory-centric computing in the future.
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