
Inverse-Inverse Reinforcement Learning.

Masking Strategy from Inverse Reinforcement Learning

Kunal Pattanayak (Cornell University), Vikram Krishnamurthy (Advisor)

and Christopher Berry (Lockheed Martin Collaborator)

Main Ideas.

- Utility Maximization (Microeconomics Theory, Machine Learning)

- (Adversarial IRL) Detecting Utility Maximization and Estimating Utility

- (Counter-Adversarial Move) Hiding Strategy from Adversarial IRL



Primer

Reinforcement Learning (RL):

→ Markov Decision Process (MDP): Next state xt+1 ∼ f (xt , at)

→ Maximize expected cumulative reward R(xt , at)

→ Examples: TD-Learning, SARSA, Q-learning (Robbins-Monro)

→ Variance reduction, Off-Policy Evaluation

Inverse Reinforcement Learning (IRL) [1, 2]:

→ Assumes RL algo. has converged to optimal policy π∗ : X → A

→ Reverse engineer MDP - Find R s.t. π∗ is optimal

→ For inf-horizon MDP: Bellman optimality
LP≡ ARest ≤ 0

→ Ill-posed problem, but true reward R satisfies AR ≤ 0

Optimal policy for MDP → Bellman optimality,

IRL for MDP → Checking if Bellman optimality holds (LP)
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Departing from MDPs to Constrained Utility Maximization

Utility Maximization: At time k, agent faces (possibly non-linear)

resource constraint gk(β) ≤ 0, chooses optimal response βk :

βk = argmaxβ∈Rm
+
u(β), gk(β) ≤ 0,

Active Constraint gk(βk) = 0, k = 1, 2, . . . ,T (T <∞)

Revealed Preference [3, 4]: Finds uest that rationalizes analyst

dataset D = {gk , βk}Tk=1:

(S1) There exists uest if the following LP has a feasible solution:

∃{uk , λk} ∈ R2T
+ s.t. RP(u,D) ≤ 0 ≡ us − uk − λkgk(βs) ≤ 0, ∀ s, k

(S2) uest(β) = min
k
{uk + λkgk(β)} rationalizes D

(Summary) Utility Maximization → KKT,

IRL (RP) for UM → Check for KKT, stitch piece-wise utility.

For quasi-convex g , reconstruction is piece-wise linear concave.
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Illustration. Revealed Preference Reconstruction

- Every feasible point in revealed preference LP corresponds to a

rationalizing utility function

- Can have a smaller (precise) set by pinning down feasible

variables u1, λ1 = 1 WLOG
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Relating Revealed Preference and IRL

Variable IRL Revealed Preference

Probe π0,P(·|xk , ak) {gk(·) ≤ 0}Tk=1

Response π∗ {βk}Tk=1

Reward R(x , a) u(β)

IRL Rationale Bellman Optimality Rationalizability

- Revealed preference (RP) ≡ IRL for utility maximization

- Equivalent RP variants [5] exist for sequential decision-making for

cumulative utility maximization

For this talk: (i) Consider utility maximization framework,

(ii) View IRL as adversarial eavesdropper that extracts strategy

Let’s Turn the Tables

“Can the decision maker spoof RP? If so, how?”
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Some Comments on Inverse IRL

• IRL is System Identification (SI) [6, 7]. I-IRL aim is to ensure

SI fails (not unidentifiable, but mis-specified utility estimate)

• Subject to budget constraints, make sub-optimal choices that:

1. Ensure true utility function is almost infeasible for RP test

2. Minimize utility loss due to sub-optimal response

• Inverse IRL focuses on ensuring utility (preferences) are not

recoverable (revealed preference fails)

• Idea is gaining traction, for e.g. [8] that treats additive

separable value and privacy term for maximization

• Naive approach: For all k , choose the same response β. This

way, feasible set of utilities only contains the constant utility

function and true utility lies outside the feasibility zone.
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Running Example. Cognitive Radar Spoofing Adversary Target

Feasible set of utilities
from RP Test

Radar's
utility u

Cognitive Radar (Utility u) Adversarial Target

Waveform 1

Waveform 2

Waveform 3

Cognitive Radar: For adversary maneuvers {αk}Kk=1, radar chooses

waveforms (response) {βk}Kk=1 such that βk = argmaxβ u(β), α
′
kβ ≤ 1

Radar Bayesian tracker: αk : state noise cov., βk : inverse of observation

noise cov., Radar SNR (Kalman precision) upper bound α′
kβk ≤ 1

Adversary Target: Uses RP test to generate set-valued radar utility.

What if D is noisy? Test to detect feasibility [9] (later)

Radar → “I need to safeguard my utility and spoof
IRL (ensure poor utility reconstruction)”
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Introduction Summary

Testing for utility maximization ≡ RP Test [10, 11] (LP Feasibility)

How to make checking linear feasibility difficult?

Ans. Cognition (Strategy) Masking

Intelligently perturbed actions successfully hide utility

We term this task as inverse IRL (I-IRL)

Key Ideas for I-IRL

- Objective: Ensure utility almost fails RP test

- How? Deliberately deviate from optimal response to trick IRL

- Constraint: Bounded Deviation from optimal response

“Performance-Obfuscation Trade-off”
Inspired from differential privacy [12], adversarial ML [13]

7 / 24



Deterministic I-IRL (Accurate Probe-Response Exchange)

Adversarial target
IRL→ RP Feasibility test (Reconstruct agent utility)

Key Question: How to rank utility functions in the feasible set?

Soln.: Margin of RP test - max. perturbation to fail RP test

MarginD(u) = max
ϵ≥0

ϵ, RP(u,D) + ϵ ≥ 0

Resembles Afriat number [3], Houtman-Maks Index [14], Varian

number [4] in economics for quantifying rationality

(Margin Manipulation)

After I-IRL
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• Margin: Closeness to edge of feasible set

(infeasibility of RP test)

• Center of feasible set: max. margin, edge of feasible

set: zero margin

• ↓ Margin ⇔ ↓ Goodness-of-fit to RP test (almost

infeasible)

• But, ↓ Margin ⇔ ↑ Deviation from optimal response

• Deterministic I-IRL: Deliberately perturb response to

push utility towards edge of feasible set from RP test

• Focus on making u almost fail RP test, instead of

ensuring no feasible set at all
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Deterministic Inverse IRL for Masking Cognition

Suppose radar faces adversarial constraints {α′
kβ ≤ 1}Kk=1. The radar’s deter-

ministic I-IRL algorithm to hide its utility u is:

Step 1. Choose margin ϵthresh ∈ R+

Step 2. Compute naive response β∗
k

Step 3. Compute optimal perturbation {δ∗k } for I-IRL:

{δ∗k } = argmin
{δk}∈Rm

K∑
k=1

∥δk∥22︸ ︷︷ ︸
(Radar’s degradation)

, Margin{αk ,β
∗
k
+δk}(u) ≤ ϵthresh︸ ︷︷ ︸

(Mitigating adversarial RP Test)

(1)

Step 4. Transmit engineered sub-optimal responses {β∗
k + δ∗k }.

Summary

Deterministic I-IRL: Small margin ϵthresh

⇐⇒ Closer to failing RP test

⇐⇒ Larger deviation from radar’s optimal strategy

• Margin Constraint is non-convex (bilinear).

Current research: Formulate convex relaxations of bi-linear I-IRL constraints.
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Numerical Results: Deterministic Inverse IRL

• Simulation-based datasets to illustrate I-IRL for 2 utility functions

• Time horizon = 50, Response dimension = 2

Insights:

• Small deviation from optimal

strategy masks u by a large extent.

• Performance degradation ↓ with ϵ

(distance from edge of feasible set).

• Optimal deviation inversely

proportional to utility’s Lipschitz

constant
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Stochastic I-IRL. Noisy Response at Adversary IRL

(Adversary side): β̂k = βk+wk , wk ∼ fw (fw known to radar) (2)

Adversarial target
IRL→ Feasibility Detector (see also [10] for details)

H0 : RP Test has a feasible solution for {αk , βk}
H1 : RP Test has NO feasible solution for {αk , βk}

IRL Detector : ϕ∗(D̂) ≶H1
H0

F−1
L (1− η) (D̂ = {αk , β̂k})

Test Statistic ϕ∗(D̂) : Min. perturbation to pass RP test,

Reference r.v. L := max
j ,k

α′
j(wj − wk),

Variable η : Adversary chosen bound for P(H1|H0)

“Radar labeled non-cognitive if margin ≤ threshold”
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Differences compared to Deterministic I-IRL

• Radar can no more manipulate margin of RP test

• Can at best manipulate P(H1|{αk , βk}, u), the
Conditional Type-I error probability, conditioned on u

• Stochastic I-IRL: Deliberately perturb radar’s response

to mitigate IRL detector (increase conditional Type-I

error probability)

• Computing optimal I-IRL requires non-deterministic

constraints (threshold on P(H1|{αk , βk}, u))

• Stochastic approximation (finite perturbation methods)

methods to achieve local optimal
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Stochastic Inverse IRL for Masking Cognition

Adversary’s sensor is noisy; everything else the same as deterministic case.

Radar’s stochastic I-IRL algorithm is:

Step 1. Choose sensitivity parameter λ > 0

Step 2. Compute naive response β∗
k

Step 3. Compute optimal perturbation {δ∗k } for I-IRL:

{δ∗k } = argmin
{δk}∈Rm

K∑
k=1

( u(β∗
k )− u(β∗

k + δk ))︸ ︷︷ ︸
(Radar’s deliberate performance loss)

− λ P(H1|{αk , β
∗
k + δk}, u)︸ ︷︷ ︸

(Mitigating adversarial IRL detector)

Step 4. Transmit engineered sub-optimal responses {β∗
k + δ∗k }

Objective: Ensuring low margin of RP Test with high probability

Summary

• Stochastic I-IRL: Trade-off between ↑ QoS and ↑ adversarial obfuscation.

• Radar can only estimate P(H1|H0, u) via Monte-Carlo methods.

• Stochastic approximation based algorithms like SPSA [15] can be used.

• SPSA → Fewer (only 2) computations/update wrt finite diff. methods.
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Numerical Results: Stochastic Inverse IRL

• Utility function u(β) =
√
β1 +

√
β2, Time horizon K = 50

Key Insights:

• Small performance loss sufficiently confuses IRL detector

(large cond. Type-I error).

• Both adversarial confusion and performance loss ↑ with λ.

• Interestingly, performance degradation ↓ with η (error bound).

• On right figure, notice the elbow point at λ ≈ 103
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Finite Sample Effects for Inverse IRL

Suppose:

- Radar has noisy (additive Gaussian) measurements of the

adversary’s probes αk .

- Radar oblivious to sensor noise and uses deterministic I-IRL.

Want to Study: Effects of noisy constraint on utility spoofing

Recall: Deterministic I-IRL → RP test margin ≤ ϵthresh

Want to bound: Probability that utility is NOT within ϵthresh

margin for RP test:

P(Margin{αk+wk ,β̃
∗
k }
(u) ��≤ ϵthresh)

wk →: Radar sensor’s measurement noise,

β̃∗k →: I-IRL response.

Assume i.i.d wk ∼ N (0,Σ).
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Finite Sample Result for I-IRL

Finite Sample Complexity for Deterministic I-IRL

For deterministic I-IRL responses, observes adversary signals

in noise. Then, under mild conditions, the I-IRL error proba-

bility is bounded as:

P(Margin{αk+wk ,β̃
∗
k }
(u) > ϵthresh) ≤ 1− T e−ψ

2/2

ψ
√
2π

- ψ(·): proportional to range of allowable probes,

inversely proportional to Lipschitz constant of utility, noise power

Takeaway: Error probability ↓ with horizon T , utility’s Lipschitz

constant and ↑ with noise power.

Remark. Above error bound is loose, currently investigating

tighter convergence rates.
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Summary

• Considered the task of inverse IRL - how to spoof a strategy

extracting system.

• Main Idea: Deliberately perturb optimal response to

sufficiently reduce margin of RP test for utility maximization

and ‘hide’ utility.

• Sub-optimality in response trades-off between Privacy and

Performance

• Discussed both noise-less and noisy exchange scenarios: both

cases are challenging (non-convex, stochastic approximation)

• Finite sample complexity for I-IRL error - How robust is I-IRL

to noise in adversary signal measurement?

• Methodology inspired from adversarial obfuscation [13] in

deep learning and differential privacy [12]
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Extensions

1. Online IRL. Current strategy hiding idea is offline (since IRL

via Afriat’s Theorem is intrinsically offline). Bandit approach

for approximating IRL detector?

2. Semi-parametric I-IRL. Jointly optimize over response

perturbations and variance of additive Laplacian noise for

robust I-IRL.

3. Counter-(counter-)nmeasure: What if adversary knows

radar’s spoofing strategy? Game theoretic approach

If you have any ideas (even if vaguely related), let’s

chat! Eager to know your thoughts.
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Thank You!
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Miscellaneous
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FAQs

• How justified is the constrained utility maximization

abstraction for radar operation?

Quite prevalent in literature:

(i) Multi-UAV network [16]: Utility → Fairness and downlink data

rate, Constraint → Transmission power, Cramer-Rao bound on

localization accuracy

(ii) Q-RAM (Resource Allocation) [17]: Utility → QoS for tracking

and search, Constraint → Bandwidth, Short-term and Long-term

constraints

(iii) Radar Tracking with ECM [18]: Utility → Neg. of weighted

mean of radar energy and dwell time, Constraint → 4% Cap on

lost tracks due to ECM
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FAQs

• Is conditional Type-I probability the only I-IRL metric for

adversarial obfuscation in stochastic I-IRL?

No fixed formula, does need more work. Some intuitive

alternatives: (a) Use deterministic I-IRL as is. Formulate

concentration inequalities for margin of the noisy dataset.

(b) Manipulate the average margin instead of margin. BUT, might

be underplaying robustness of IRL detector.

(c) [Speculative] Use a neural network to learn IRL method on

the fly and disrupt ECM.

Remark: I-IRL hinges delicately on IRL methodology.

Other heuristic ideas to hide utility?
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FAQs

• What’s next after IRL, and inverse IRL? I2-IRL?

Game-theoretic formulation.

Key challenge: Formulate a utility function in terms of both

adversary probes and radar response.

Anticipated outcome: Inverse game theory - Detecting play from

the Nash equilibrium of a game between adversary and radar.
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