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Main ldeas.

- Utility Maximization (Microeconomics Theory, Machine Learning)

- (Adversarial IRL) Detecting Utility Maximization and Estimating Utility
- (Counter-Adversarial Move) Hiding Strategy from Adversarial IRL



Reinforcement Learning (RL):

— Markov Decision Process (MDP): Next state x;y1 ~ f(x¢, ar)
— Maximize expected cumulative reward R(x:, ar)

— Examples: TD-Learning, SARSA, Q-learning (Robbins-Monro)
— Variance reduction, Off-Policy Evaluation

Inverse Reinforcement Learning (IRL) [1, 2]:

— Assumes RL algo. has converged to optimal policy 7% : X — A
— Reverse engineer MDP - Find R s.t. 7 is optimal

— For inf-horizon MDP: Bellman optimality LEP ARt <0

— lll-posed problem, but true reward R satisfies AR <0

Optimal policy for MDP — Bellman optimality,
IRL for MDP — Checking if Bellman optimality holds (LP)
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Departing from MDPs to Constrained Utility Maximization

Utility Maximization: At time k, agent faces (possibly non-linear)
resource constraint gx(5) < 0, chooses optimal response [:

Bk = argmaxﬁeRT U(ﬁ), gk(ﬂ) < 07
Active Constraint gx(fx) =0, k=1,2,..., T (T < c0)

Revealed Preference [3, 4]: Finds uest that rationalizes analyst
dataset D = {gx, Bk }/_;:
(S1) There exists et if the following LP has a feasible solution:
Hug, M} €RZT sit. RP(u,D) 0= s — ug — Mg(Bs) <0, ¥ s, k
(S2) uest(B) = mkin{uk + Akgk(B)} rationalizes D
(Summary) Utility Maximization — KKT,
IRL (RP) for UM — Check for KKT, stitch piece-wise utility.

For quasi-convex g, reconstruction is piece-wise linear concave.
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lllustration. Revealed Preference Reconstruction

- Every feasible point in revealed preference LP corresponds to a
rationalizing utility function

- Can have a smaller (precise) set by pinning down feasible
variables u;, \; = 1 WLOG

True utility (projected to space of
piecewise-linear concave functions)

RP(-,D) <0

Utility Function u(f)

\ / - Re;ponse 5-
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Relating Revealed Preference and IRL

Variable IRL Revealed Preference
Probe 70, P(+| Xk, ak) {gk(:) <0},
Response T* (B},
Reward R(x, a) u(p)

IRL Rationale | Bellman Optimality Rationalizability

- Revealed preference (RP) = IRL for utility maximization
- Equivalent RP variants [5] exist for sequential decision-making for
cumulative utility maximization

For this talk: (i) Consider utility maximization framework,
(ii) View IRL as adversarial eavesdropper that extracts strategy

Let’s Turn the Tables
“Can the decision maker spoof RP? If so, how?”
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Some Comments on Inverse IRL

e IRL is System Identification (SI) [6, 7]. I-IRL aim is to ensure
Sl fails (not unidentifiable, but mis-specified utility estimate)
e Subject to budget constraints, make sub-optimal choices that:
1. Ensure true utility function is almost infeasible for RP test
2. Minimize utility loss due to sub-optimal response
e Inverse IRL focuses on ensuring utility (preferences) are not
recoverable (revealed preference fails)
e |dea is gaining traction, for e.g. [8] that treats additive
separable value and privacy term for maximization
e Naive approach: For all k, choose the same response 3. This
way, feasible set of utilities only contains the constant utility
function and true utility lies outside the feasibility zone.
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Running Example. Cognitive Radar Spoofing Adversary Target

¥

Feasible set of utilities
from RP Test

Radar's
utility u
Waveform 3

Cognitive Radar (Utility u) Adversarial Target
Cognitive Radar: For adversary maneuvers {ay }K_,, radar chooses

waveforms (response) {3 }5_; such that Bx = argmaxg u(f), a3 <1

Radar Bayesian tracker: ay: state noise cov., fi: inverse of observation
noise cov., Radar SNR (Kalman precision) upper bound o 8x < 1

Adversary Target: Uses RP test to generate set-valued radar utility.
What if D is noisy? Test to detect feasibility [9] (/ater)

Radar — ‘I need to safeguard my utility and spoof
IRL (ensure poor utility reconstruction)”
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Introduction Summary

Testing for utility maximization = RP Test [10, 11] (LP Feasibility)
How to make checking linear feasibility difficult?
Ans. Cognition (Strategy) Masking
Intelligently perturbed actions successfully hide utility
We term this task as inverse IRL (I-IRL)

Key Ideas for I-IRL
- Objective: Ensure utility almost fails RP test
- How? Deliberately deviate from optimal response to trick IRL
- Constraint: Bounded Deviation from optimal response

“Performance-Obfuscation Trade-off”
Inspired from differential privacy [12], adversarial ML [13]
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Deterministic I-IRL (Accurate Probe-Response Exchange)

. IRL L .
Adversarial target — RP Feasibility test (Reconstruct agent utility)

Key Question: How to rank utility functions in the feasible set?
Soln.: Margin of RP test - max. perturbation to fail RP test

Marginp(u) = max e, RP(u,D)+€¢>0

Resembles Afriat number [3], Houtman-Maks Index [14], Varian
number [4] in economics for quantifying rationality

A Radar utility A Radar utility

\ ¢ ‘ After I-IRL

N i
Margin'—_~ Teasible (Margin Manipulation) fy, o~ Feasible
- utilities - utilities
¥ v
High Margin Low Margin
(More likely to be revealed) (Less likely to be revealed)
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Margin: Closeness to edge of feasible set
(infeasibility of RP test)

Center of feasible set: max. margin, edge of feasible
set: zero margin

1 Margin < | Goodness-of-fit to RP test (almost
infeasible)

But, | Margin < 7 Deviation from optimal response

Deterministic |-IRL: Deliberately perturb response to
push utility towards edge of feasible set from RP test

Focus on making u almost fail RP test, instead of
ensuring no feasible set at all
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Deterministic Inverse IRL for Masking Cognition

Suppose radar faces adversarial constraints {a} 3 < l}szl. The radar’s deter-
ministic I-IRL algorithm to hide its utility u is:

Step 1. Choose margin €thresh € R4
Step 2. Compute naive response (3;
Step 3. Compute optimal perturbation {d;} for I-IRL:

K
{0k} = {é;rg}fg{f:n Solel3 Marging., ge 16,3 (1) < €thresh (1)
K k=1

S—— (Mitigating adversarial RP Test)
(Radar's degradation)

Step 4. Transmit engineered sub-optimal responses {3} + d; }.

Deterministic I-IRL: Small margin €epresh
<= Closer to failing RP test

<= Larger deviation from radar’s optimal strategy

e Margin Constraint is non-convex (bilinear).
Current research: Formulate convex relaxations of bi-linear I-IRL constraints.

v
Summary

P

1
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Numerical Results: Deterministic Inverse IRL

Radar’s performance degradation

e Simulation-based datasets to illustrate I-IRL for 2 utility functions

e Time horizon = 50, Response dimension = 2

(a) u(B) = /B + VB

0.17
0.14
0.11
0.08
0 0.2 0.4 0.6 0.8
Extent of cognition masking e
(b) u(B) = B*(1) + F*(2)
0.04
0.03
0.02
0.01
0.025 0.05 0.075 0.1

Extent of cognition masking e

Insights:
e Small deviation from optimal
strategy masks u by a large extent.

e Performance degradation | with €
(distance from edge of feasible set).

e Optimal deviation inversely
proportional to utility's Lipschitz
constant
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Stochastic I-IRL. Noisy Response at Adversary IRL

(Adversary side): Bk = B+ wk, wi ~ f,, (f,, known to radar) (2)

Adversarial target R Feasibility Detector (see also [10] for details)

Ho : RP Test has a feasible solution for {a, 5k}
H; : RP Test has NO feasible solution for {cv, Sk}

~

IRL Detector : |¢*(D) st F (1 —n) | (D = {ax, Bi})

Test Statistic qﬁ*(]ﬁ)) : Min. perturbation to pass RP test,

Reference r.v. L := max o (wj — wi),
J

)

Variable 1 : Adversary chosen bound for P(H;|Hp)

“Radar labeled non-cognitive if margin < threshold”
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Differences compared to Deterministic I-IRL

e Radar can no more manipulate margin of RP test

e Can at best manipulate P(H;|{ax, Bk}, u), the
Conditional Type-I error probability, conditioned on u

e Stochastic I-IRL: Deliberately perturb radar’s response
to mitigate IRL detector (increase conditional Type-|
error probability)

e Computing optimal I-IRL requires non-deterministic
constraints (threshold on P(Hy|{ax, Bk}, u))

e Stochastic approximation (finite perturbation methods)
methods to achieve local optimal
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Stochastic Inverse IRL for Masking Cognition

Adversary's sensor is noisy; everything else the same as deterministic case.
Radar’s stochastic I-IRL algorithm is:

Step 1. Choose sensitivity parameter A > 0
Step 2. Compute naive response 3}
Step 3. Compute optimal perturbation {4} } for I-IRL:

{%}—SﬁWHE:( u(Br) —u(Bk +6k)) =X P(Hil{eu, By + 6k}, u)
k FER —_—
(Radar's deliberate performance loss) (Mitigating adversarial IRL detector)

Step 4. Transmit engineered sub-optimal responses {; + J;}

Objective: Ensuring low margin of RP Test with high probability

e Stochastic I-IRL: Trade-off between 1 QoS and 1 adversarial obfuscation.

e Radar can only estimate P(H;|Hop, u) via Monte-Carlo methods.
e Stochastic approximation based algorithms like SPSA [15] can be used.
e SPSA — Fewer (only 2) computations/update wrt finite diff. methods.
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Numerical Results: Stochastic Inverse IRL

e Utility function u(3) = v/B1 + v/B2, Time horizon K = 50

1
—_ v
b B & = 0.05
8= 0.8 z 0.3 n=01
N = =) B
o ,% g 3 — = 0.2 K
—~ B 0o S8 E oz
] ol = o
= o] =
S Aoy =005 A S 0l
= 5 n=01 wn 51)0
= 2 — 7 o
= t: 0. ; n=02 = = (
[SERS] e
&} 0 . . é 0.1
0wt w1t 10 w0t 10?0t 1wt 1
Sensitivity Parameter A Sensitivity Parameter A
Key Insights:

e Small performance loss sufficiently confuses IRL detector
(large cond. Type-l error).

e Both adversarial confusion and performance loss 1 with .

e Interestingly, performance degradation | with 7 (error bound).

e On right figure, notice the elbow point at A ~ 103
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Finite Sample Effects for Inverse IRL

Suppose:

- Radar has noisy (additive Gaussian) measurements of the
adversary's probes ay.

- Radar oblivious to sensor noise and uses deterministic I-IRL.

Want to Study: Effects of noisy constraint on utility spoofing

Recall: Deterministic I-IRL — RP test margin < €thresh
Want to bound: Probability that utility is NOT within €thesh
margin for RP test:

IP’(I\/Iargin{akJerﬁ:}(u) & €thresh)

wy —: Radar sensor's measurement noise,
D%k .
B —: I-IRL response.

Assume i.i.d wx ~ N(0,X).
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Finite Sample Result for I-IRL

Finite Sample Complexity for Deterministic I-IRL

For deterministic I-IRL responses, observes adversary signals

in noise. Then, under mild conditions, the I-IRL error proba-

bility is bounded as:

T e ¥*/2
YV2m

P(Margin{aﬁwkﬁz}(u) > €thresh) < 1 —

- 1(+): proportional to range of allowable probes,
inversely proportional to Lipschitz constant of utility, noise power

Takeaway: Error probability | with horizon T, utility's Lipschitz
constant and 1 with noise power.

Remark. Above error bound is loose, currently investigating
tighter convergence rates.
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e Considered the task of inverse IRL - how to spoof a strategy
extracting system.

e Main ldea: Deliberately perturb optimal response to
sufficiently reduce margin of RP test for utility maximization
and ‘hide’ utility.

e Sub-optimality in response trades-off between Privacy and
Performance

e Discussed both noise-less and noisy exchange scenarios: both
cases are challenging (non-convex, stochastic approximation)

e Finite sample complexity for I-IRL error - How robust is I-IRL
to noise in adversary signal measurement?

e Methodology inspired from adversarial obfuscation [13] in
deep learning and differential privacy [12]
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Extensions

1. Online IRL. Current strategy hiding idea is offline (since IRL
via Afriat’s Theorem is intrinsically offline). Bandit approach
for approximating IRL detector?

2. Semi-parametric I-IRL. Jointly optimize over response
perturbations and variance of additive Laplacian noise for
robust I-IRL.

3. Counter-(counter-)"measure: What if adversary knows

radar’s spoofing strategy? Game theoretic approach

If you have any ideas (even if vaguely related), let's
chat! Eager to know your thoughts.
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Thank You!
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Miscellaneous
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e How justified is the constrained utility maximization
abstraction for radar operation?

Quite prevalent in literature:

(i) Multi-UAV network [16]: Utility — Fairness and downlink data
rate, Constraint — Transmission power, Cramer-Rao bound on
localization accuracy

(i) Q-RAM (Resource Allocation) [17]: Utility — QoS for tracking
and search, Constraint — Bandwidth, Short-term and Long-term
constraints

(iii) Radar Tracking with ECM [18]: Utility — Neg. of weighted
mean of radar energy and dwell time, Constraint — 4% Cap on
lost tracks due to ECM
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e Is conditional Type-l probability the only I-IRL metric for
adversarial obfuscation in stochastic I-IRL?

No fixed formula, does need more work. Some intuitive
alternatives: (a) Use deterministic I-IRL as is. Formulate
concentration inequalities for margin of the noisy dataset.

(b) Manipulate the average margin instead of margin. BUT, might
be underplaying robustness of IRL detector.

(c) [Speculative] Use a neural network to learn IRL method on
the fly and disrupt ECM.

Remark: I-IRL hinges delicately on IRL methodology.

Other heuristic ideas to hide utility?
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e What's next after IRL, and inverse IRL? 12-IRL?
Game-theoretic formulation.

Key challenge: Formulate a utility function in terms of both
adversary probes and radar response.

Anticipated outcome: Inverse game theory - Detecting play from
the Nash equilibrium of a game between adversary and radar.
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