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Main Idea. Detecting utility maximization ≡ Checking linear feasibility

How to make checking linear feasibility difficult?

Radar Context:

Cognitive radar → Choose optimal waveform for target tracking

Adversarial Target → Malicious maneuvers to ‘estimate’ radar’s utility

How to spoof adversarial attacks on radar’s utility function?

Ans. Cognition Masking

Intelligently perturbed radar actions successfully hide radar’s utility



Background. Cognitive Radar and Revealed Preference

Feasible set of utilities
from RP Test

Radar's
utility u
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Waveform 1
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Waveform 3

Cognitive Radar [1–3]: Optimal waveform adaptation.

For target maneuvers (probe) {αk}K
k=1, radar chooses

waveforms (response) {βk}K
k=1 that maximize utility u:

βk = argmaxβ∈Rm+
u(β), α

′
kβ ≤ 1 (1)

Radar Bayesian tracker: Linear Gaussian dynamics

(i) αk : state noise covariance

(ii) βk : observation noise covariance

(iii) α′
kβk ≤ 1 (1): Bound on radar SNR ≡ Bound on

radar’s asymptotic predicted Kalman precision [3]

‘Choose best waveform subject to resource constraints’

Utility Estimation via Revealed Preference (RP):

RP Test [4, 5] : For dataset D = {αk , βk}K
k=1, linear

feasibility test is equivalent to checking for utility

maximization (1):

RP(u,D) ≤ 0, u = {uk , λk} ∈ R2m
+ , (2)

uest(β) = min
k

{uk + λkα
′
k (β − βk )} (3)

What if D is noisy?

RP Test (2) generalizes to statistical hypothesis test

to detect feasibility [6] (discussed in slide 4).

Cognition Masking

How to mitigate adversarial RP test and ensure poor reconstruction of radar’s utility function
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Result 1. Deterministic Inverse RP for Masking Cognition

Assumption: “Radar and adversary have accurate probe-response measurements.”

Adversarial target
IRL→ RP Feasibility test (2) (Set-valued estimate of radar’s utility)

How to rank utility functions in the feasible set?

Rank via Margin of RP test - max. perturbation to fail RP test (based on [7])

MarginD(u) = max
ϵ≥0

ϵ, RP(u,D) + ϵ ≥ 0, u ∈ Feasible set

(Theorem 4)

After Cognition Masking

• Margin: Closeness to edge of feasible set (infeasibility of RP test)

• Center of feasible set: max. margin, edge of feasible set: zero margin

• ↑ Margin ⇐⇒ ↑ Goodness-of-fit to RP test

• Deterministic Cognition masking: Deliberately perturb radar’s response

to push radar’s utility towards edge of feasible set from RP test
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Deterministic Inverse IRL for Masking Cognition

Suppose radar faces adversarial constraints {α′
kβ ≤ 1}Kk=1. The radar’s deter-

ministic I-IRL algorithm to hide its utility u is:

Step 1. Choose margin ϵthresh ∈ R+

Step 2. Compute naive response β∗
k (1)

Step 3. Compute optimal perturbation {δ∗k } for I-IRL:

{δ∗k } = argmin
{δk}∈Rm

K∑
k=1

∥δk∥22︸ ︷︷ ︸
(Radar’s degradation)

, Margin{αk ,β
∗
k
+δk}(u) ≤ ϵthresh︸ ︷︷ ︸

(Mitigating adversarial RP Test)

(4)

Step 4. Transmit engineered sub-optimal responses {β∗
k + δ∗k }.

Summary

Deterministic I-IRL: Small margin ϵthresh

⇐⇒ Closer to failing RP test (2)

⇐⇒ Larger deviation from radar’s optimal strategy

• Margin Constraint in (4) is non-convex (bilinear).

Current research: Formulate convex relaxations of bi-linear constraints in (4).
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Numerical Results: Deterministic Inverse IRL

• Simulation-based datasets to illustrate I-IRL for 2 utility functions

• Parameters: Time horizon K = 50, Probe/Response dimension m = 2

Key Insights:

• Small deviation from optimal strategy masks utility by a large extent.

• Radar’s performance degradation ↑ with ϵ.
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Result 2. Stochastic Inverse RP for Masking Cognition

Assumption: “Adversary has noisy measurements of the radar’s response.”

(Adversary side): β̂k = βk + wk , wk ∼ fw (fw known to radar) (5)

Adversarial target
IRL→ Feasibility Detector (see also [3] for details)

H0 : RP Test (2) has a feasible solution for {αk , βk}

H1 : RP Test (2) has NO feasible solution for {αk , βk}

IRL Feasibility Detector : ϕ∗(D̂) ≶H1
H0

F−1
L (1− η) (D̂ = {αk , β̂k}), (6)

ϕ∗(D̂) : max
{ū>0}

Marginū(D̂), r.v. L := max
j,k

α′
j (wj − wk ),

η : Adversary chosen bound for P(H1|H0)

“Radar is non-cognitive if margin is under a threshold”

• Radar can no more manipulate margin of RP test.

• Can at best manipulate P(H1|{αk , βk}, u) (Cond. Type-I error prob.)

• Stochastic Cognition masking: Deliberately perturb radar’s response to mit-

igate IRL detector (increase conditional Type-I error probability).
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Stochastic Inverse IRL for Masking Cognition

Adversary’s sensor is noisy; everything else the same as deterministic case.

Radar’s stochastic I-IRL algorithm is:

Step 1. Choose sensitivity parameter λ > 0

Step 2. Compute naive response β∗
k (1)

Step 3. Compute optimal perturbation {δ∗k } for I-IRL:

{δ∗k } = argmin
{δk}∈Rm

K∑
k=1

( u(β∗
k )− u(β∗

k + δk ))︸ ︷︷ ︸
(Radar’s deliberate performance loss)

− λ P(H1|{αk , β
∗
k + δk}, u)︸ ︷︷ ︸

(Mitigating adversarial IRL detector)

(7)
Step 4. Transmit engineered sub-optimal responses {β∗

k + δ∗k }

(7): Ensuring low margin of RP Test with high probability

Summary

• Stochastic I-IRL: Trade-off between ↑ QoS and ↑ adversarial obfuscation.

• Radar can only estimate P(H1|H0, u) (7) via Monte-Carlo methods.

• Stochastic approximation based algorithms like SPSA [8] can be used for

implementing optimization problem (7).

• SPSA → Fewer (only 2) computations/update wrt finite diff. methods.
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Numerical Results: Stochastic Inverse IRL

• Simulations for a single utility function u(β) =
√
β1 +

√
β2

• Parameters: Time horizon K = 50, Probe/Response dimension m = 2

Key Insights:

• Small performance loss sufficiently confuses IRL detector (large cond. Type-I error).

• Both adversarial confusion and radar’s performance degradation ↑ with λ.

• Interestingly, performance degradation ↓ with η (error bound).

Remark: Inverse IRL results on slides 3,6 can be extended to the case where radar

hides is system constraints and adversary dictates the radar’s utility function, for e.g. ,

beam allocation (Th. 3 in paper).
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Result 3. Finite Sample Effects for Inverse IRL

Stochastic I-IRL (slide 6) adapts deterministic I-IRL to strategy ‘detector’.

Key Idea. Sufficient statistics for existence of strategy in terms of observation noise.

What if radar has noisy measurements of the adversary’s probes?

Prob. bounds for Deterministic I-IRL (slide 3) to mask strategy effectively?

Recall: Deterministic I-IRL maintains feasibility margin of IRL test less than ϵthresh (4).

Want to bound: P(Margin{αk+wk ,β̃
∗
k
}(u) �≤ ϵthresh) , where wk → Radar sensor’s

measurement noise, β̃∗
k → I-IRL response (4). Assume i.i.d wk ∼ N (0,Σ).

Finite Sample Complexity for Deterministic I-IRL

Consider the radar choosing I-IRL responses according to (4) and observes

adversary’s probes in noise. Then, under mild conditions, the probability that

deterministic I-IRL fails to mask the radar’s strategy is given by:

P(Margin{αk+wk ,β̃
∗
k
}(u) > ϵthresh) ≤ 1−

T e−ψ
2(D̂)/2

ψ(D̂)
√
2π

, D̂ = {αk+wk , βk}Tk=1,

ψ(·) (8) is proportional to Lipschitz constant of radar’s constraint, range of allowable

probes, and inversely proportional to Lipschitz constant of radar’s utility function.

Remark. Above error bound is loose, currently investigating tighter convergence rates.
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Conclusion and Extensions

Summary:

• Radar counter-countermeasure to mitigate an adversarial countermeasure

• Cognition Masking: Deliberately perturb optimal radar waveforms to

sufficiently reduce margin of RP test and ‘hide’ radar’s utility.

• Sub-optimality in response trades-off between Privacy and Performance

• Methodology inspired from adversarial obfuscation [9] in deep learning

and differential privacy [10]

Extensions (Current research):

1. Online IRL. Current strategy hiding idea is offline (since IRL via Afriat’s

Theorem is intrinsically offline). Bandit approach for approximating IRL

detector?

2. Meta-confusion. Vary the low margin constraint over time for ‘robust’

adversarial mitigation.

3. Semi-parametric. Jointly optimize over response perturbations and

variance of additive Laplacian noise for robust I-IRL.

4. Counter-(counter-)nmeasure: What if adversary knows radar’s spoofing

strategy? Game theoretic approach?
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Thank You!
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Miscellaneous
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FAQs

• How justified is the constrained utility maximization

abstraction for radar operation?

Quite prevalent in literature:

(i) Multi-UAV network [11]: Utility → Fairness and downlink data

rate, Constraint → Transmission power, Cramer-Rao bound on

localization accuracy

(ii) Q-RAM (Resource Allocation) [12]: Utility → QoS for tracking

and search, Constraint → Bandwidth, Short-term and Long-term

constraints

(iii) Radar Tracking with ECM [13]: Utility → Neg. of weighted

mean of radar energy and dwell time, Constraint → 4% Cap on

lost tracks due to ECM
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FAQs

• Is conditional Type-I probability the only I-IRL metric for

adversarial obfuscation in stochastic I-IRL?

No fixed formula, does need more work. Some intuitive

alternatives: (a) Use deterministic I-IRL as is. Formulate

concentration inequalities for margin of the noisy dataset.

(b) Manipulate the average margin instead of margin. BUT, might

be underplaying robustness of IRL detector.

(c) [Speculative] Use a neural network to learn IRL method on

the fly and disrupt ECM.

Remark: I-IRL hinges delicately on IRL methodology.

Other heuristic ideas to hide utility?
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FAQs

• What’s next after IRL, and inverse IRL? I2-IRL?

Game-theoretic formulation.

Key challenge: Formulate a utility function in terms of both

adversary probes and radar response.

Anticipated outcome: Inverse game theory - Detecting play from

the Nash equilibrium of a game between adversary and radar.
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