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Generalized spherical distributions

Let X have a density f (x) on Rd and let S be the unit sphere
{x : |x| = 1}, B be the unit ball {x : |x| ≤ 1}. A distribution is spherically
distributed if f (·) is constant on each sphere rS, r > 0.

A distribution is generalized spherical if there is a curve/surface S∗ with
f (·) being constant on all multiples rS∗, r > 0.

Goal: to have flexible program to work with large classes of such
distributions in d−dimensions.
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Star shaped distribution

mix of 8 cones
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Start shaped contour in 3D
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Previous work
Fernandez, Osiewalski and Steel (1995) gave idea, Arnold, Castillo and
Sarabia (2008) extended some and advocated modeling data with these.

We will start with a contour/surface given by a a polar representation:

S∗ = {c(s)s : s ∈ S}

c(s)
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Radial function and density
Let g(r) ≥ 0 be an integrable function on [0,∞), it will determine the
radial decay of the density. Using the contour function c(s) and the radial
function, define

f (x) =

{
g
(

|x|
c(x/|x|)

)
|x| > 0

g(0) |x| = 0.
(1)

With suitable integrability conditions, this gives a density on Rd .

Fernandez, Osiewalski and Steel (1995) started with a homogeneous
function v(x) on Rd (v(rx) = rv(x)) and defined B∗ = {x ∈ Rd :
v(x) ≤ 1}. If B∗ is convex and symmetric, then v(·) is a norm on Rd with
unit ball B∗ and unit sphere given by it’s boundary
S∗ = {x ∈ Rd : v(x) = 1}. In general, v(·) is not a norm, but we may still
call S∗ a “unit ball”. In their approach, the density

f (x) = g(v(x))

is called a v -spherical density. A.K.A. homothetic distributions.
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In terms of the contour function, v(x) = |x|/c(x/|x|). We find using the
contour function as the starting point a more intuitive approach: it defines
the unit ball, which defines the level curves.

For (1) to be a proper density, it is required that

k−1∗ :=

∫
S
cd(s)ds ∈ (0,∞) (2)

and ∫ ∞
0

rd−1g(r)dr = k∗.

We will assume c(s) is continuous and bounded away from 0 on compact
S, so the k∗ is finite. An easy way to guarantee the second condition is to
start with a univariate density h(r) on [0,∞) and define
g(r) = k∗r

1−dh(r).
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Specifying the contour
We wanted flexible, parametric families of generalized spherical
distributions that worked in arbitrary dimensions that included most of the
cases described in the earlier work. We allow contour functions of the form

c(s) =

N1∑
j=1

ajcj(s) +
1∑N2

j=1 a
∗
j c
∗
j (s)

,

where cj > 0, c∗j > 0, and cj(·) and/or c∗(·) are one of the cases discussed
below.

c(s) = 1, which makes S∗ the Euclidean ball.

c(s) = c(s|µ, θ) is a cone with peak 1 at center µ ∈ S and height 0
at the base given by the circle {x ∈ S : µ · x = cos θ}. It is assumed
that |θ| ≤ π/2.

c(s) = c(s|µ, σ) = exp(−t(s)2/(2σ2)) is a Gaussian bump centered
at location µ ∈ S and “standard deviation” σ > 0. Here t(s) is the
distance between µ and the projection of s ∈ S linearly onto the plane
tangent to S at µ.
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r∗(s) = ||s||`p(Rd ), p > 0.

r∗(s) = ||As||`p(Rm), p > 0, A an (m × d) matrix. This allows a
generalized p-norm. If A is d × d and orthogonal, then the resulting
contour will be a rotation of the standard unit ball in `p. If A is d × d
and not orthogonal, then the contour will be sheared. If m > d , it will
give the `p norm on Rm of As.

r∗(s) = (sTAs)1/2, where A is a positive definite (d × d) matrix.
Then the level curves of the distribution are ellipses.

Sums of the last three types allow us to consider contours that are familiar
unit balls, or generalized unit balls, or sums of such shapes. Sums of the
first three types allow us to describe star shaped contours. Combinations
allow more general shapes, see the following plots.
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isotropic elliptical

4−norm 1.3−norm
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0.5−norm generalized (rotated) 1−norm

sum of previous two generalized 1.3−norm
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blob #1 blob #2

blob #3 blob #4
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normal bumps mix of 8 bumps

5 cones, r0= 0.3 mix of 8 cones
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The radial function

Generally want g(r) to be decreasing so that f (x) is unimodal on Rd .
Here are two accessible classes, defined in terms of univariate r.v. R ≥ 0,
which has pdf h(r).

R ∼Gamma(d + a + 1), then g(r) = k∗r
1−dh(r) is a constant times a

Gamma(a). If a ∈ (0, 1], then g(r) is decreasing. Is finite at 0 if and
only if a = 1, always has a light tail.

R is the amplitude of an isotropic α-stable distribution (0 < α < 2)
on Rd : R = |Z|. Using result of Wolfe (1975) on unimodality of
isotropic stable laws, it can be shown that r1−dh(r) is decreasing,
bounded at the origin, and has a heavy tail: r1−dh(r) ∼ cr−(d+α).
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Simulation method 1

X = RS,

where R ≥ 0 has pdf h(r) = (1/k∗)r
d−1g(r) and S is uniform on the

contour S∗.

Simulating R is easy for cases mentioned above.

Simulating S:
In dimension d = 2, ok: can accumulate arc length as you move around
the contour and use the inverse of that to simulate.

In dimension d > 2: how to simulate from manifold uniformly w.r.t.
surface S∗? Approximate answer: triangulate the surface and to sample
uniformly from the triangulation, choose one face proportional to the area
of the face, then sample uniformly from the face.
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Simulation method 2

X = TB,

where T ≥ 0 is derived from g(r) and B is uniform on the unit ball B∗.

Simulating B:
Easy: can sample uniformly from a rectangle that contains B and reject
points outside the ball.

Simulating T?
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Spherical cubature

To find the normalizing constant k∗, one has to evaluate an integral over
the unit sphere S ⊂ Rd . Generally not possible to evaluate exactly, so will
have to use multivariate numerical integration (cubature) on the
(d − 1)-dimensional manifold.

Integrating over spheres/simplices comes up in other problems: evaluating
the characteristic function of a multivariate stable law or the d.f. of a
multivariate extreme value law.

Exact formulas for polynomials!
Stroud integration - works in dim. 3 to 16 for smooth functions
Adaptive spherical cubature - use polar parameterization of the unit sphere
and then use existing adaptive cubature on that rectangular domain.
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Ratios of stable r.v.

In several applications, the ratio of independent stable r.v. arise:

X = Z1/Z0, (3)

where Zi ∼ S(αi , βi , γi , δi ; k).

For example, the sample ACF function of heavy tailed data with tail
RV−α, 1 < α < 2, the lag 1 sample covariance∑n

i=1(XiXi − µ2)∑n
i=1 X

2
i

converges when n→∞ to the ratio (3) with α1 = α, α0 = α/2.
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Program to compute density, d.f. and quantiles of ratio

Standard formulas for density and d.f. of a ratio of independent r.v. are
combined with numerical calculations of the densities/d.f. of the stable
terms to get

F (t) = P(Z1/Z0 ≤ t)

f (t) = F ′(t).

quantile function F−1(u).

J. Nolan (American U) Generalized Spherical MURI 4/26/13 22 / 24



−4 −2 0 2 4

0.
0

0.
4

0.
8

F(z)

−4 −2 0 2 4

0.
0

1.
0

f(z)

Distribution function and density of Z1/Z0, where Z1 ∼ S (α, 0; 1) and
Z0 ∼ S (α/2, 1; 1). The solid line corresponds to α = 1.25, the dashed line
to α = 1.75.
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Tabulated critical values F−1(1− p)

For the ratio of symmetric α-stable and indep. positive (α/2)-stable.

p

α 0.001 0.005 0.01 0.025 0.05 0.1

1.00 318.295 63.584 31.678 12.385 5.798 2.394
1.10 146.641 34.107 18.224 7.887 4.029 1.844
1.20 73.976 19.557 11.093 5.242 2.889 1.445
1.30 39.717 11.721 7.007 3.582 2.112 1.141
1.40 22.165 7.204 4.517 2.483 1.557 0.901
1.50 12.571 4.457 2.924 1.723 1.143 0.704
1.60 7.058 2.715 1.865 1.178 0.825 0.537
1.70 3.774 1.577 1.140 0.774 0.570 0.391
1.80 1.778 0.821 0.634 0.465 0.359 0.258
1.90 0.586 0.327 0.274 0.217 0.175 0.131
1.95 0.219 0.149 0.130 0.107 0.088 0.067
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