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1. Part I: Risk Estimation–Basic Problem.

(Joint with Filip Lindskog, Joyjit Roy.)
Given a risk vector

X = (X1, . . . , Xd), d ≤ ∞,
estimate the probability of a risk region R

P [X ∈ R]

where R is beyond the range of observed data. Solution based on
asymptotic assumption of heavy tails: In M+(E).

nP
[ X

b(n)
∈ ·
]
→ ν(·) (DOA)

Issues:

• What is “→”?

• What is E? M+(E)? Traditionally used one point uncompactifi-
cation and vague convergence.

• Specify ν(·).
Quasi-solution to estimation problem:

P [X ∈ R] ≈ 1

n
ν̂(R/b̂(n)).
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Example:

d = 2 and

R = (x,∞] = (x1,∞]×(x2,∞]

and

P [X ∈ R] = P [X1 > x1, X2 > x2].

0

x

Risk contagion: Can two or more components of the risk vector X be
simultaneously large?

Ambiguity: Should we do the approximation assuming E = [0,∞)2 \
{0} or assuming E = (0,∞)2.
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2. Asymptotic independence

• If E = [0,∞)d \ {0}, asymptotic independence means

ν({x : xi > yi, xj > yj), }) = 0, yi > 0, yj > 0. (AsyIndep)

for all 1 ≤ i < j ≤ d and thus such an asymptotic model has no
risk contagion since we estimate

P [ two or more components of X are large simultaneously ] ≈ 0.

• Can we improve on this asymptotic method?

2.1. (AsyIndep) not uncommon:

• X has independent components.

• Gaussian copula model: Heavy tailed marginals but Gaussian de-
pendence with

corr(Xi, Xj) = ρ(i, j) < 1.

• Let U ∼ U(0, 1) and

X =
( 1

U
,

1

1− U

)
.
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2.2. Standard Example.

For d = 2: If X = (X1, X2) and X1 ⊥⊥ X2, X1, X2 iid with

P [Xi > y] = y−1, y > 1.

• Then for x1 > 0, x2 > 0, as n→∞

nP [Xi > nxi]→ x−1i , i = 1, 2,

nP [X1 > nx1, X2 > nx2]→ 0,

so X is regularly varying on E = [0,∞)2 \ {0} with index 1 and
limit measure concentrating on the axes.

• Also for x1 > 0, x2 > 0,
√
nP [X1 >

√
nx1] ·

√
nP [X2 >

√
nx2] =

nP [X1 >
√
nx1, X2 >

√
nx2]→

1

x1x2
,

so X is regularly varying on E0 = (0,∞)2 \ {0} with index 2 and
limit measure giving positive mass to (x,∞].
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Conclude for this example:

• X is regularly varying on E = [0,∞) \ {0} with index 1
(scale by n) and limit measure concentrating on lines through {0},
and giving zero mass to (0,∞).

• X is regularly varying on E0 = (0,∞) with index 2
(scale by

√
n) and the limit measure gives positive mass to (0,∞).

Summary:

Lesson: If the support (eg, axes) of the limit measure is disjoint from
the risk region (eg, (x,∞))

• peel away the support (axes);

• look for extreme value behavior on what’s left (eg, E \ {axes} =
E0).

Some progress:

• Detection.

• Estimation.

• Non-parametric technique using rank methods detects hidden struc-
ture.
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3. Regular variation on cones in CSMS (with Lindskog
& Roy).

Context: Consider random element X of a complete separable metric
space S with an origin and scaling operation: Examples of S:

• R+; X is a random variable,

• Rd
+; X is a random vector,

• R∞+ ; X is a random sequence,

• D[0, 1]=càdlàg space; X is a càdlàg process such as a Lévy pro-
cess.

Suppose F1 ⊂ S closed (cone) containing 0 and define the TABOF
space

SF1 = S \ F1.
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→ The random element X ∈ S has a distribution with a regularly
varying tail on SF1 if ∃ b(t) ↑ ∞ and measure ν 6≡ 0 on SF1 such that

tP
[ X

b(t)
∈ ·
]
→ ν(·), in M∗(SF1).

[Must define topology on M∗(SF1), the measures on SF1 that are finite
on sets at positive distance from F1; fairly routine.]

Let F2 be another closed (cone) containing 0 and set

SF1∪F2 = S \ (F1 ∪ F1).

→ The random X has a distribution with hidden regular variation on
SF1∪F2 if there is regular variation on SF1 AND if ∃ b1(t) ↑ ∞ and a
measure ν1(·) 6≡ 0 on SF1∪F2 such that

tP
[ X

b1(t)
∈ ·
]
→ ν1(·), in M∗(SF1∪F2),

AND
b(t)/b1(t)→∞

(which makes the behavior on SF1∪F2 hidden).
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3.0.1. Examples for d = 2:

1. Regular variation on the positive quadrant with conditional ex-
treme value (CEV) model:

S = [0,∞), F1 = {0},
SF1 = [0,∞) \ {0}.

CEV on Du:

F2 = {(x, 0) : x > 0},
SF1∪F2 = S \ (F1 ∪ F2)

= [0,∞)× (0,∞) =: Du.

E E⊓

E= E0
0

0

0

0

∞ ∞

∞ ∞

Figure 1. The different cones in 2-dimensions

1
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2. Asymptotic full dependence:

Regular variation on [0,∞)\{0} with limit
measure concentrating on diagonal.

S = [0,∞), F1 = {0},
SF1 = S \ F1 = [0,∞) \ {0}.

Remove diagonal:

F2 ={(x, x) : x > 0},
SF1∪F2 =S \ (F1 ∪ F2)

=[0,∞) \ {(x, x) : x ≥ 0}
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3.0.2. Example: iid on R∞
+ .

S = R∞+ , F = F(j), j ≥ 0, where

F(j) ={x := (x1, x2, . . . ) ∈ R∞+ :
∞∑
j=1

εxj(0,∞) ≤ j}

={x : at most j components > 0}.

So

F(0) ={0∞}
F(1) =axes in R∞+ through 0, including 0

=
∞⋃
j=1

{0}j−1 × (0,∞)× {0}∞ ∪ {0∞},

...

Leads to a sequence of spaces:

R∞+ \ F(0)︸ ︷︷ ︸ ⊃ R∞+ \ F(1) ⊃ R∞+ \ F(2)︸ ︷︷ ︸ ⊃ . . .

remove 0∞ remove axes remove 2-dim faces . . . .
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Suppose,

• S = R∞+ ;

• X = (X1, X2 . . . ) has iid components with each Xi having a reg-
ularly varying tail with scaling function b(t). Means:

tP [Xj > b(t)x]→ να(x,∞) = x−α, t→∞, α > 0,

and b(t) satisfies,

b(t) =
( 1

P [Xj > ·]

)−1
(t), P [Xj > b(t)] ∼ 1

t
.

Then as t→∞, for j ≥ 1

tP [X/b(t1/j) ∈ ·]→ µ(j) in M(R∞+ \ F(j−1))

and µ(j) concentrates on F(j) \ F(j−1), the sequences with exactly j
positive components.



I. Risk Estimation

Asy Indep

RV on Cones; CSMS

Challenges

Visits

II. (in,out)

Help

Title Page

JJ II

J I

Page 13 of 24

Go Back

Full Screen

Close

Quit

The summary for Dr. Spock types.

The limit measure for j = 1, 2, . . . .

j remove scaling µ(j) support

1 {0} b(t)
∑∞

l=1 να(dxl)
[∏

i 6=l ε0(dxi)
]

axes

2 axes b(
√
t)

∑
l,m

να(dxl)να(dxm)
[ ∏
i/∈{l,m}

ε0(dxi)
]

2d faces

...
...

...
...

...

m F(m−1) b(t
1
m )

∑
(l1,...,lm)

m∏
p=1

να(dxlp)
[ ∏
i/∈{l1,...,lm}

ε0(dxi)
]

F(m) \ F(m−1)
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3.0.3. Example continued: CUMSUM on R∞
+ .

Define
CUMSUM : R∞+ 7→ R∞+

by
CUMSUM(x) = (x1, x1 + x2, . . . )

and then, because CUMSUM is uniformly continuous ,

tP [CUMSUM(X)/b(t1/j) ∈ ·]→ µ(j) ◦ CUMSUM−1

in M
(
R∞+ \CUMSUM(F(j−1))

)
and µ(j) ◦CUMSUM−1 concentrates on

CUMSUM(F(j) \ F(j−1))), the set of sequences with j positive jumps.
Applying a projection

R∞+ 7→ R+; x 7→ xk,

to the j = 1 case, yields the one big jump principle:

P [X1 + · · ·+Xk > b(t)x]→ kx−α, x > 0.

or
P [X1 + · · ·+Xk > t] ∼ kP [X1 > t], t→∞.
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3.0.4. Extension to Lévy processes

• {X(t), t ≥ 0}: Lévy process with Lévy measure ν(·).

• As x→∞,
ν(x,∞) ∼ x−αL(x).

• να(x,∞) = x−α, x > 0.

• For m ≥ 0, D≤m ⊂ D([0, 1]) are nondecreasing step functions with
at most m jumps.

• {U1, U2, . . . } are iid U(0, 1).

Then for j ≥ 1,

nP
[ X(·)
b(n1/j)

∈ ·
]
→ E

[
νjα

{
y = (y1, . . . , yj) ∈ (0,∞)j :

j∑
i=1

yi1[Ui,1] ∈ ·
}]

in M∗(D[0, 1] \ D≤j−1) as n→∞.

For j = 1 recover Hult/Lindskog

nP
[X(·)
b(n)

∈ ·
]
→ E

[
να

{
y ∈ (0,∞)j : y1[U1,1] ∈ ·

}]
,

where the limit measure concentrates on functions with one upward
jump occurring at uniform time.
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4. Challenges.

• Practical?

– Limitations of asymptotic methods: rates of convergence?

– Instead of estimating a risk probability as 0, estimate is a
very small number.

• Need for more formal inference for estimation including confidence
statements.

• General HRV technique requires knowing the support of the limit
measure. Estimate support?

• High dimension problems? How to sift through different possi-
ble subcones? There could be a sequence of cones with regular
variation on each. How to teach a computer to find the cones?

• How to go from standard to more realistic non-standard case; still
some inference problems.
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5. Visits (that I know about) post Natick

• January 8: Don → Sid at Columbia.

• Febrary 5: Sid & Richard → Don & Weibo & group at UMass.

• March 22: Sid → John Nolan at AmericanU.

• April 8: Bo Jiang (UMass) → Sid & Richard at Columbia.

• Conference call: John Nolan & Gena with Edan Ben-Ari & Mech
Eng re ballistics.

• May 6: John Lavery → John Nolan at AmericanU.

“This visit is a site visit for informal discussion (not an
official review of the MURI). Nevertheless, the visit is
something that the MURI team can mention in its next
interim progress report. Site visits are not large items to
report but are positive and it is worthwhile to record this
small item in the interim progress report .”
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6. Properties of joint distribution of (in-degree, out-
degree) of nodes in preferential attachment models

Discussions with Don Towsley, Bo Jiang, Richard Davis.

• Preferential attachment growth model of directed graph.

– Vn = set of vertices at time (stage, event) n.

– En = set of edges.

– in(v,n) = in-degree of node v ∈ Vn at time n.

– out(v,n) = out-degree of node v ∈ Vn at time n.

– Fn = known information from observing growth up through
time n.

– Ni,j(n) = # number of nodes v ∈ Vn such that(
in(v, n), out(v, n)

)
= (i, j).

• Abstract the growth dynamic for Krapivsky or reciprocity model
or similar models.

Either:

– With prob p new node v /∈ Vn appears and attaches to u ∈ Vn
with prob p

(n+1)
u ∈ Fn;
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or something else happens (eg, in Krapivsky):

– With prob q = 1−p no new node appears but a new directed
edge e /∈ En appears from u ∈ Vn → v ∈ Vn with prob

p̃
(n+1)
u,v ∈ Fn.

For example: in Krapivsky, for a parameters λ ≥ 0, µ ≥ 0,

p(n+1)
u =

in(u, n) + λ∑
u′∈Vn in(u′, n) + λ

∈ Fn,

p̃(n+1)
u,v =

(out(u, n) + µ)(in(v, n) + λ)∑
u′,v′∈Vn(out(u′, n) + µ)(in(v′, n) + λ)

∈ Fn.

• Summary statistic (Richard): Point measure,

CTn :=
∑
v∈Vn

ε(in(v,n),out(v,n)) =
∑
(i,j)

Ni,j(n)ε(i,j)
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7. Don’t know!

• What is the origin of heavy tails? Presumably, as n→∞,

Ni,j(n)

n
→ fi,j

CTn

n
→ CT∞ =:

∑
(i,j)

fi,jε(i,j).

– Find a sexy martingale argument to prove the limits exist.

– Find broad circumstances under which fi,j exhibit power law
behavior.

– Find good definition of power law behavior . Understand how
this relates to current formulation of multivariate heavy tails.
In what space do the power laws exist; see first part of the
talk.

– In one dimension, a regularly varying sequence {cn} means

lim
n→∞

c[nt]
cn

= g(t), t > 0

and this implies there exists a regularly varying function of a
continuous variable c(t) such that

cn = c(n).
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Is there a comparable result in dimensions bigger than one?

– In one dimension, Karamata’s theorem says the indefinite in-
tegral of a regularly varying function is still regularly varying.
This is known to sometimes fail in higher dimensions. If we
generate a measure from {fi,j}, is it regularly varying?

– (Richard) Double limit vs single limit: The argument for
power law behavior in preferential attachment models lets
n→∞ to get fi,j and then effectively takes another limit in
i, j to observe power law behavior. Does there exist an, bn →
∞ such that ∑

v∈Vn

ε(in(v,n)/an,out(v,n)/bn)

converges to something identifiable as heavy tailed. Does this
single limit relate nicely to existing theory?

– MLE or other forms of estimation: Based on what data? How
to sample? (Don? Zhi-Li?)
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