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Networks with MVHT distributions 

MVHT distributions ubiquitous in networks 
 in-degree, out-degree, reciprocated degree, 

labels,  aggregate weights, … 
 

Q: How to model, generate, estimate, 
classify, learn network structures? 

 How do networks evolve? 
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Outline 

 outline (D. Towsley) 
modeling, generating, estimating networks  

(Towsley) 
 classifying networks, distributions (Gong) 
 competition in growing networks (Jiang) 
 learning networks from data (Atwood) 
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Kaprivsky model [Krapivsky et al 2001] 

with prob. p 
new node attaches to existing node 𝑣, 

with prob. proportional to 
 with prob. q = 1 - p 

new edge 𝑢 → 𝑣 connects existing nodes, 
with prob. proportional to 

 joint distribution 
 when 𝑣𝑖𝑖 = 𝑣𝑜𝑜𝑜 

ℙ 𝑑𝑖𝑖 = 𝑖,𝑑𝑜𝑜𝑜 = 𝑗 ~ 𝐶 𝑖𝜆−1𝑗𝜇

(𝑖+𝑗)2𝜆+1
  

 



Kaprivsky model 
 

efficient network generation algorithm – 
Atwood (UMass) 
 𝑂 𝑛 log𝑛  
 generates 106 node networks in seconds 
 node fitness, edge weights, other variants 

 analysis – Gena 
 parameter estimation – Jiang (UMass), 

Davis  
 



Kaprivsky model: limitations 

 cannot control in/out degree correlation 
 cannot directly account for reciprocity 
 network datasets exhibit significant 

variations in both 
 

More useful models? 
 

 



A versatile network model (UMass, UMN) 

 generate undirected CA network  
 attach to 𝑖 in proportion to deg 𝑖 + 𝜆,  𝜆 > −1 

 assign directions randomly 
 undirected, prob. p   
 directed, prob. 1 - p, each direction prob. (1 - p)/2 

marginal unreciprocated in-, out-, 
reciprocated degree distr.   

𝑃 𝑑𝑘 = 𝑖 ∝ 𝑖−3−𝜆, 𝑘 = 𝑖𝑖, 𝑜𝑜𝑜, 𝑟𝑟 
 asymptotic joint distribution 

𝑃(𝑑𝑖𝑖 = 𝑖,𝑑𝑜𝑜𝑜 = 𝑗,𝑑𝑟𝑟 = 𝑗)~ 𝐶
(𝑖+𝑗+𝑘)3+𝜆

𝑖+𝑗+𝑘
𝑖  𝑗  𝑘 𝑝𝑘 1−𝑝
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Ongoing work (UMass, UMN) 

explore other network models 
 model clustering (HT cluster sizes) 
 

 
 place joint distributions in MRV framework 

 leverage Gena’s recent work 
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Complex Graph Similarity Testing and
Multivariate Distribution Comparison

Using Random Walks
Shan Lu, Jieqi Kang, Weibo Gong, Don Towsley

UMASS Amherst
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Outline of the approach

• Need for fast similarity testing among large data
group/complex networks

• Existing algorithms are combinatorial in nature
• Small-time asymptotic results for diffusion on

manifold motivated our approach
• Analogues on graphs/large data groups
• 1d experiments to seek understanding
• Analyzing graphs with 2d distributions
• Collaborations (Zhi-Li, Gena)
• Future work
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Consider diffusion on  Riemannian manifold      :

with initial condition

and boundary conditions

Using the          spectral resolution                  ,

The Dirichlet heat kernel for      is

and the heat content

Note                                                   is the Fourier coefficient of the

initial condition in the eigen space spanned by                                 !



random
walk on
graph



Notations

Normalized Laplacian:

Laplacian matrix:

5

Let                                         be the eigenvalues of       and
the corresponding eigenvectors. With

and                                 ,

where                                      .

Random walk Laplacian:



Notations
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Partition vertex set       into two subsets, the set of all interior
nodes         and the set of all boundary nodes         .
Label the interior vertices                    and the boundary vertices

. The normalized       can be partitioned into:

Let the boundary vertices be absorbing in the heat equation in
next page. Use       for for convenience henceforth.



Heat Equation and Heat Content

Heat Equation is associated with the normalized graph Laplacian

with a given initial condition.

Heat Content:
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• Time derivatives of the heat content:

• When            ,
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Heat Equation and Heat Content



1. Transition matrix .

2. Lazy random walk .

3.     For any given time               , take the limit with              (        ),
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Lazy Random Walk Approximation



Graph Similarity Testing

• Undirected Graphs
– Barabási–Albert model  vs. Erdős–Rényi model

• Directed Graphs
– Krapivsky’s model (2001)
– Multivariate power law degree distribution
– Krapivsky’s model  vs. Erdős–Rényi model
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Barabási–Albert model: starts with nodes; each new
node is connected to existing nodes with a probability
proportional to the degree of the existing nodes.
Degree distribution follows                             .
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Erdős–Rényi model :                , each edge is included in the graph
with probability      independent from other edges.

Barabási–Albert  vs. Erdős–Rényi Model



Barabási–Albert  vs. Erdős–Rényi Model
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The time derivatives of the heat contents for the two groups of
graphs

The initial time derivative of the heat contents for power
law graphs with different mean degrees

Power Law graphs generated by B-A model

Random graphs generated by E-R model

Boundary selection: nodes with the smallest degrees.

Two groups of graphs: power law graphs
generated by B-A model and random graphs
generated by E-R model. Average degree
varies from 20 to 50. Heat content in each
group are plotted in the same color.



• The eigenvalues of the normalized Laplacian satisfy the semicircle
law under the condition that the minimum expected degree is
relatively large. (Chung et. al. 2003)

Laplacian Spectrum of two graphs with mean degree 20

Laplacian eigenvalues

Barabási–Albert  vs. Erdős–Rényi Model
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Power Law graph generated by B-A model Random graph generated by E-R model

Barabási–Albert  vs. Erdős–Rényi Model



• Krapivsky’s Model (‘Degree distributions of growing
networks’ , 2001)
With probability , a new node is introduced and attached

to a target node with probability proportional to               .
With probability , a new link from node to node

is created with probability proportional to                                  .

• Degree distribution

• Average in-degree and out-degree:
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Krapivsky vs. Erdős–Rényi Model
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Generated a 2000 nodes’ directed graph using Krapivsky’s
model with                              and                . CCDF of the in-
degrees and out-degrees of the generated graph:

Krapivsky vs. Erdős–Rényi Model



Krapivsky vs. Erdős–Rényi Model
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Generated four 2000 nodes’ directed graphs using Krapivsky’s model
with  p=0.1 , 0.15, 0.2 and  0.25 , respectively. Also generated four
directed graphs using E-R model with the same average degrees. Heat
contents in each group are plotted in the same color.

Directed graphs with bivariate power Law
degree distributions

Directed E-R random graphs
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Krapivsky vs. Erdős–Rényi Model

Boundary selection : nodes with smallest values of

The number of boundary vertices impacts the heat contents of directed
E-R random graphs more.



Multivariate Distribution Comparison

• Multivariate Normal Distributions
– Compare bivariate normal distributions with different

covariance matrices

• Multivariate Power Law Distributions
– Krapivsky’s model, 2002
– Correlated bivariate power law degree distributions
– Correlated distributions vs. independent distributions
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Multivariate Normal Distribution

• Probability density function of the 2-dimensional
bivariate normal distribution
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Multivariate Normal Distribution

vs.                  (               ) Symmetrised
divergence

vs. 0.1438 0.1895 0.3333

vs. 0.4199 1.2082 1.6281

vs. 0.8304 3.4328 4.2632
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Multivariate Normal Distribution

20 samples for each distribution with 5000
random numbers in each sample.

Histogram is used for density estimation.

Heat contents for samples of the same
distribution are plotted in the same color.



• Krapivsky’s Model (‘A statistical physics perspective on web
growth’, 2002) :
– Some new node is introduced as isolated for webnet reality.

• Degree distribution
 Marginal distribution

 Joint Distribution (when )
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Multivariate distribution with
power law marginal

In-degree and out-degree of a node are correlated



Independent bivariate power law distribution with the same
marginal distributions as in Krapivsky’s model
(                                         in the figures below)
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level curves

Multivariate distribution with
power law marginal



The joint degree distribution
generated by Krapivsky’s
model
( in the
figure on right)
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The level curves for Krapivsky’s distribution with different    values

Multivariate distribution with
power law marginal



Independent bivariate power
law distributions

Heat contents and time derivatives of the two groups of distributions:
distributions generated by Krapivsky’s model with different     values
and the corresponding independent ones.
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Distributions generated
by Krapivsky’s model

Multivariate distribution with
power law marginal
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Heat content derivatives of the distributions generated by Krapivsky’s
model with different      values.

Multivariate distribution with power law
marginal



Ongoing Work
 Mathematical definition and properties
 L2 difference does not account for decreasing

importance in time
Graph Similarity Testing
 Consider other graph generative models
 Consider real world network datasets

 Multivariate Distribution Comparison
 Real data; higher dimension;
 Theoretical understanding of correlation impact

 Collaborations
 UMASS-Cornell
 UMASS-UMN
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