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1. Hidden Regular Variation.

(Joint with Filip Lindskog, Joyjit Roy.)

Goal:

• Find a framework in which multiple multivariate heavy tail prop-
erties exist simultaneously; improve risk estimates.

• Give significant examples illustrating this framework.

Given a risk vector

X = (X1, . . . , Xd), d ≤ ∞,

estimate the probability of a risk region R

P [X ∈ R]

where R is beyond the range of observed data. Solution based on
asymptotics: Assumption of multivariate heavy tails:

• Choose a state space; for example

– E = [0,∞) \ {0}, or

– E = (0,∞).
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• Choose a scaling function b(t) → ∞ appropriate for E such that
that in M+(E) ,

nP
[ X

b(n)
∈ ·
]
→ ν(·). (DOA)

Issues:

• What is “→”?

• What is E? M+(E)?

– Traditionally used one point uncompactification and vague
convergence.

– Has major drawbacks.

– We now have a flexible framework in CSMS.

– E and the scaling function b(·) are always related.

• Specify ν(·) and estimate.

Quasi-solution to estimation problem:

P [X ∈ R] ≈ 1

n
ν̂(R/b̂(n)).
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But

• ν(·) may concentrate on a small region of the state space.

• There may be simultaneous regular variation properties coexisting
under different choices of state space E and scaling functions b(·).
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Example:

d = 2 and

R = (x,∞] = (x1,∞]×(x2,∞]

and

P [X ∈ R] = P [X1 > x1, X2 > x2].

0

x

Risk contagion: Can two or more components of the risk vector X be
simultaneously large?

Ambiguity: Should we do the approximation assuming E = [0,∞)2 \
{0} or assuming E = (0,∞)2.
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2. Asymptotic independence

• If E = [0,∞)d \ {0}, asymptotic independence means

ν({x : xi > yi, xj > yj), }) = 0, yi > 0, yj > 0. (AsyIndep)

for all 1 ≤ i < j ≤ d and thus such an asymptotic model has no
risk contagion since we estimate

P [ two or more components of X are large simultaneously ] ≈ 0.

• Can we improve on this asymptotic method?

2.1. (AsyIndep) not uncommon:

• X has independent components.

• Gaussian copula model: Heavy tailed marginals but Gaussian de-
pendence with

corr(Xi, Xj) = ρ(i, j) < 1.

• Let U ∼ U(0, 1) and

X =
( 1

U
,

1

1− U

)
.
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2.2. Standard Example.

For d = 2: If X = (X1, X2) and X1 ⊥⊥ X2, X1, X2 iid with

P [Xi > y] = y−1, y > 1.

• Then for x1 > 0, x2 > 0, as n→∞

nP [Xi > nxi]→ x−1i , i = 1, 2,

nP [X1 > nx1, X2 > nx2]→ 0,

so X is regularly varying on E = [0,∞)2 \ {0} with index 1 and
limit measure concentrating on the axes.

• Also for x1 > 0, x2 > 0,
√
nP [X1 >

√
nx1] ·

√
nP [X2 >

√
nx2] =

nP [X1 >
√
nx1, X2 >

√
nx2]→

1

x1x2
,

so X is regularly varying on E0 = (0,∞)2 \ {0} with index 2 and
limit measure giving positive mass to (x,∞].
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Conclude for this example:

• X is regularly varying on E = [0,∞) \ {0} with index 1
(scale by n) and limit measure concentrating on lines through {0},
and giving zero mass to (0,∞).

• X is regularly varying on E0 = (0,∞) with index 2
(scale by

√
n) and the limit measure gives positive mass to (0,∞).
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Some progress (in low dimensions):

• Detection.

• Estimation.

• Non-parametric technique using rank methods detects hidden struc-
ture.

• Framework applicable to R∞, C[0, 1], D[0, 1].

• Examples where an infinite number of regular variation properties
coexist

– iid with regularly varying marginals.

– Lévy processes with regularly varying Lévy measure.

• Framework includes classical theory as well as the conditional
extreme value model (condition on one component of a vector
being large).
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3. Framework: Regular variation on cones in CSMS
(with Lindskog & Roy).

Context: Consider random element X of a complete separable metric
space S with an origin and scaling operation: Examples of S:

• R+; X is a random variable,

• Rd
+; X is a random vector,

• R∞+ ; X is a random sequence,

• D[0, 1]=càdlàg space; X is a càdlàg process such as a Lévy pro-
cess.

Suppose F1 ⊂ S closed (cone) containing 0 and define the TABOF
space

SF1 = S \ F1.
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→ The random element X ∈ S has a distribution with a regularly
varying tail on SF1 if ∃ b(t) ↑ ∞ and measure ν 6≡ 0 on SF1 such that

tP
[ X

b(t)
∈ ·
]
→ ν(·), in M∗(SF1).

[Must define topology on M∗(SF1), the measures on SF1 that are finite
on sets at positive distance from F1; fairly routine.]

Let F2 be another closed (cone) containing 0 and set

SF1∪F2 = S \ (F1 ∪ F1).

→ The random X has a distribution with hidden regular variation on
SF1∪F2 if there is regular variation on SF1 AND if ∃ b1(t) ↑ ∞ and a
measure ν1(·) 6≡ 0 on SF1∪F2 such that

tP
[ X

b1(t)
∈ ·
]
→ ν1(·), in M∗(SF1∪F2),

AND
b(t)/b1(t)→∞

(which makes the behavior on SF1∪F2 hidden).
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3.0.1. Example: iid on R∞
+ .

S = R∞+ , F = F(j), j ≥ 0, where

F(j) ={x := (x1, x2, . . . ) ∈ R∞+ :
∞∑
j=1

εxj(0,∞) ≤ j}

={x : at most j components > 0}.

So

F(0) ={0∞}
F(1) =axes in R∞+ through 0, including 0

=
∞⋃
j=1

{0}j−1 × (0,∞)× {0}∞ ∪ {0∞},

...

Leads to a sequence of spaces:

R∞+ \ F(0)︸ ︷︷ ︸ ⊃ R∞+ \ F(1) ⊃ R∞+ \ F(2)︸ ︷︷ ︸ ⊃ . . .

remove 0∞ remove axes remove 2-dim faces . . . .
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Suppose,

• S = R∞+ ;

• X = (X1, X2 . . . ) has iid components with each Xi having a reg-
ularly varying tail with scaling function b(t). Means:

tP [Xj > b(t)x]→ να(x,∞) = x−α, t→∞, α > 0,

and b(t) satisfies,

b(t) =
( 1

P [Xj > ·]

)−1
(t), P [Xj > b(t)] ∼ 1

t
.

Then as t→∞, for j ≥ 1

tP [X/b(t1/j) ∈ ·]→ µ(j) in M(R∞+ \ F(j−1))

and µ(j) concentrates on F(j) \ F(j−1), the sequences with exactly j
positive components.
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Recent extensions:

1. J. Roy extends this to study HRV for moving averages of the form

Xn =
∞∑
j=0

ψjZn−j, n ∈ Z

where {Zn} is a doubly infinite positive iid sequence with regularly
varying marginals and ψj ≥ 0.

As a random element of the CSMS
∏∞

i=−∞R of double sided se-
quences,

• X = {Xn} is regularly varying and

• an infinite number of regular variation properties coexist.

2. Alternative method of counteracting tendency toward asymptotic
independence by gradually increasing dependence at the correct
rate. Related to

• Hüsler–Reiss distributions and

• CEV model.
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4. Challenges.

• Practical?

– Limitations of asymptotic methods: rates of convergence?

– Instead of estimating a risk probability as 0, estimate is a
very small number.

• Need for more formal inference for estimation including confidence
statements.

• General HRV technique requires knowing the support of the limit
measure. Estimate support?

• High dimension problems? How to sift through different possi-
ble subcones? There could be a sequence of cones with regular
variation on each. How to teach a computer to find the cones?

• How to go from standard to more realistic non-standard case
where components not scaled the same; still some inference prob-
lems.
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5. Don’t know! Coming year.

• Core issues (even in 2 dimensions):

– What does is mean for

P [X = i, Y = j] =: fij

to be multivariate regularly varying (have a power law)?

– Embedding problem: Assuming we know what it means for
fij to be regularly varying, when does there exist a regularly
varying function U(x, y) of continuous variables such that

fij = U(i, j)?

(Always true in one dimension.)

– When does this imply the measure

P [(X, Y ) ∈ · ]

is regularly varying?

Note: The integral of a regularly varying function u(s, t)

U(x, y) =

∫ x

0

∫ y

0

u(s, t)dsdt,

is not necessarily regularly varying. (Always true in one di-
mension.)
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– Tauberian theorems in higher dimensions are known in re-
stricted circumstances. Needed for network models where
limiting frequencies are given in terms of generating func-
tions.

• What is the origin of heavy tails? For reasonable models, presum-
ably, as n→∞,

Nn(i, j)

n
→ fi,j

CTn

n
→ CT∞ =:

∑
(i,j)

fi,jε(i,j).

where

Nn(i, j) = #{nodes at time n with in-degree = i, out-degree = j}.

– Generalize sexy martingale arguments used for undirected
graphs to prove the limits exist for directed graphs.

– Find broad assumptions under which fi,j exhibit power law
behavior. (Nobody really believes networks evolve like, eg,
Krapivsky.)

– Use a martingale central limit theorem (?) to understand

asymptotic normality of Nn(i,j)
n

; gateway to inference?
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• Continue to think about MLE or other forms of estimation as
applied to network data.

• Understand the role of censoring in data such as slashdot .



Title Page

JJ II

J I

Page 19 of 19

Go Back

Full Screen

Close

Quit

Contents

Risk Estimation

Asy Indep

RV on Cones; CSMS

Challenges

Help


	Risk Estimation
	Asy Indep
	 (AsyIndep) not uncommon:
	 Standard Example.

	RV on Cones; CSMS
	Example: iid on  R+.

	Challenges
	Help

