Multivariate Heavy Tailed Phenomena: Modeling, Diagnostics and Applications

Sidney Resnick School of Operations Research and Information Engineering Rhodes Hall, Cornell University Ithaca NY 14853 USA

> http://people.orie.cornell.edu/~sid sir1@cornell.edu sidresnick@gmail.com

> > MURI Review: Cornell

September 30, 2013

Risk Estimation
Asy Indep
RV on Cones; CSMS
Challenges
Help
Title Page
Go Back
Full Screen
Close
Quit

1. Hidden Regular Variation.

(Joint with Filip Lindskog, Joyjit Roy.)

Goal:

- Find a framework in which multiple multivariate heavy tail properties exist simultaneously; improve risk estimates.
- Give significant examples illustrating this framework.

Given a risk vector

$$\boldsymbol{X} = (X_1, \ldots, X_d), \qquad d \leq \infty,$$

estimate the probability of a risk region \mathcal{R}

 $P[\boldsymbol{X} \in \mathcal{R}]$

where \mathcal{R} is beyond the range of observed data. Solution based on asymptotics: Assumption of multivariate heavy tails:

• Choose a state space; for example

$$-\mathbb{E} = [0, \infty) \setminus \{0\}, \text{ or}$$

 $-\mathbb{E} = (0, \infty).$

• Choose a scaling function $b(t) \to \infty$ appropriate for \mathbb{E} such that that in $M_+(\mathbb{E})$,

$$nP\left[\frac{\mathbf{X}}{b(n)} \in \cdot\right] \to \nu(\cdot).$$
 (DOA)

Issues:

- What is " \rightarrow "?
- What is \mathbb{E} ? $M_+(\mathbb{E})$?
 - Traditionally used one point uncompactification and vague convergence.
 - Has major drawbacks.
 - We now have a flexible framework in CSMS.
 - $-\mathbb{E}$ and the scaling function $b(\cdot)$ are always related.
- Specify $\nu(\cdot)$ and estimate.

Quasi-solution to estimation problem:

$$P[\mathbf{X} \in \mathcal{R}] \approx \frac{1}{n} \hat{\nu}(\mathcal{R}/\hat{b}(n))$$

But

- $\nu(\cdot)$ may concentrate on a small region of the state space.
- There may be simultaneous regular variation properties coexisting under different choices of state space \mathbb{E} and scaling functions $b(\cdot)$.

Example:

d = 2 and $\mathcal{R} = (\mathbf{x}, \mathbf{\infty}] = (x_1, \mathbf{\infty}] \times (x_2, \mathbf{\infty}]$ and $P[\mathbf{X} \in \mathcal{R}] = P[X_1 > x_1, X_2 > x_2].$

Risk contagion: Can two or more components of the risk vector \boldsymbol{X} be simultaneously large?

0

Х

Ambiguity: Should we do the approximation assuming $\mathbb{E} = [0, \infty)^2 \setminus \{\mathbf{0}\}$ or assuming $\mathbb{E} = (0, \infty)^2$.

2. Asymptotic independence

• If $\mathbb{E} = [0, \infty)^d \setminus \{\mathbf{0}\}$, asymptotic independence means

 $\nu(\{\mathbf{x}: x_i > y_i, x_j > y_j), \}) = 0, \quad y_i > 0, y_j > 0.$ (AsyIndep)

for all $1 \leq i < j \leq d$ and thus such an asymptotic model has no risk contagion since we estimate

P[two or more components of X are large simultaneously] ≈ 0 .

• Can we improve on this asymptotic method?

2.1. (AsyIndep) not uncommon:

- X has independent components.
- Gaussian copula model: Heavy tailed marginals but Gaussian dependence with

$$\operatorname{corr}(X_i, X_j) = \rho(i, j) < 1.$$

• Let $U \sim U(0,1)$ and

$$\boldsymbol{X} = \left(\frac{1}{U}, \frac{1}{1-U}\right).$$

2.2. Standard Example.

For d = 2: If $\mathbf{X} = (X_1, X_2)$ and $X_1 \perp X_2, X_1, X_2$ iid with $P[X_i > y] = y^{-1}, \quad y > 1.$ • Then for $x_1 > 0, x_2 > 0$, as $n \to \infty$

$$nP[X_i > nx_i] \to x_i^{-1}, \quad i = 1, 2,$$

 $nP[X_1 > nx_1, X_2 > nx_2] \to 0,$

so X is regularly varying on $\mathbb{E} = [0, \infty)^2 \setminus \{0\}$ with index 1 and limit measure concentrating on the axes.

• Also for $x_1 > 0, x_2 > 0$,

 $\sqrt{}$

$$\overline{n}P[X_1 > \sqrt{n}x_1] \cdot \sqrt{n}P[X_2 > \sqrt{n}x_2] =$$
$$nP[X_1 > \sqrt{n}x_1, X_2 > \sqrt{n}x_2] \rightarrow \frac{1}{x_1x_2}$$

so X is regularly varying on $\mathbb{E}_0 = (0, \infty)^2 \setminus \{\mathbf{0}\}$ with index 2 and limit measure giving positive mass to $(\mathbf{x}, \mathbf{\infty}]$.

Cornell
Risk Estimation
Asy Indep
RV on Cones; CSMS
Challenges
Help
Title Page
Page 7 of 19
Go Back
Full Screen
Close
Quit

<u>Conclude</u> for this example:

- X is regularly varying on E = [0,∞) \ {0} with index 1 (scale by n) and limit measure concentrating on lines through {0}, and giving zero mass to (0,∞).
- X is regularly varying on E₀ = (0,∞) with index 2 (scale by √n) and the limit measure gives positive mass to (0,∞).

Cornell
Risk Estimation
Asy Indep
RV on Cones; CSMS
Challenges
Help
Title Page Image: Constraint of the page
Page 8 of 19
Full Screen
Close
Quit

Some progress (in low dimensions):

- Detection.
- Estimation.
- Non-parametric technique using rank methods detects hidden structure.
- Framework applicable to \mathbb{R}^{∞} , C[0,1], D[0,1].
- Examples where an infinite number of regular variation properties coexist
 - iid with regularly varying marginals.
 - Lévy processes with regularly varying Lévy measure.
- Framework includes classical theory as well as the conditional extreme value model (condition on one component of a vector being large).

Pick Estimation
Asy Indep
RV on Cones; CSMS
Challenges
Help
Title Page
•• ••
Page <mark>9</mark> of <mark>19</mark>
Go Back
Full Screen
Close
Quit

3. Framework: Regular variation on cones in CSMS (with Lindskog & Roy).

Context: Consider random element X of a complete separable metric space S with an origin and scaling operation: Examples of S:

- \mathbb{R}_+ ; **X** is a random variable,
- \mathbb{R}^d_+ ; **X** is a random vector,
- \mathbb{R}^{∞}_+ ; **X** is a random sequence,
- D[0,1]=càdlàg space; X is a càdlàg process such as a Lévy process.

Suppose $\mathbb{F}_1 \subset \mathbb{S}$ closed (cone) containing **0** and define the TABOF space $\mathbb{S}_{\mathbb{F}_1} = \mathbb{S} \setminus \mathbb{F}_1.$

 \rightarrow The random element $X \in \mathbb{S}$ has a distribution with a regularly varying tail on $\mathbb{S}_{\mathbb{F}_1}$ if $\exists b(t) \uparrow \infty$ and measure $\nu \not\equiv 0$ on $\mathbb{S}_{\mathbb{F}_1}$ such that

$$tP\left[\frac{\mathbf{X}}{b(t)} \in \cdot\right] \to \nu(\cdot), \quad \text{in } M^*(\mathbb{S}_{\mathbb{F}_1}).$$

[Must define topology on $M^*(\mathbb{S}_{\mathbb{F}_1})$, the measures on \mathbb{S}_{F_1} that are finite on sets at positive distance from F_1 ; fairly routine.]

Let \mathbb{F}_2 be another closed (cone) containing **0** and set

 $\mathbb{S}_{\mathbb{F}_1 \cup \mathbb{F}_2} = \mathbb{S} \setminus (\mathbb{F}_1 \cup \mathbb{F}_1).$

→ The random X has a distribution with hidden regular variation on $\mathbb{S}_{\mathbb{F}_1 \cup \mathbb{F}_2}$ if there is regular variation on $\mathbb{S}_{\mathbb{F}_1}$ AND if $\exists b_1(t) \uparrow \infty$ and a measure $\nu_1(\cdot) \neq 0$ on $\mathbb{S}_{\mathbb{F}_1 \cup \mathbb{F}_2}$ such that

$$tP\left[\frac{\mathbf{X}}{b_1(t)} \in \cdot\right] \to \nu_1(\cdot), \quad \text{in } M^*(\mathbb{S}_{\mathbb{F}_1 \cup \mathbb{F}_2}),$$

AND

$$b(t)/b_1(t) \to \infty$$

(which makes the behavior on $\mathbb{S}_{\mathbb{F}_1 \cup \mathbb{F}_2}$ hidden).

3.0.1. Example: iid on \mathbb{R}^{∞}_+ .

$$S = \mathbb{R}^{\infty}_{+}, \ \mathbb{F} = \mathbb{F}^{(j)}, \ j \ge 0, \ \text{where}$$
$$\mathbb{F}^{(j)} = \{ \mathbf{x} := (x_1, x_2, \dots) \in \mathbb{R}^{\infty}_{+} : \sum_{j=1}^{\infty} \epsilon_{x_j}(0, \infty) \le j \}$$
$$= \{ \mathbf{x} : \ \text{at most } j \text{ components } > 0 \}.$$
So
$$\mathbb{F}^{(0)} = \{ \mathbf{0}_{\infty} \}$$
$$\mathbb{F}^{(1)} = \text{axes in } \mathbb{R}^{\infty}_{+} \text{ through } \mathbf{0}, \ \text{including } \mathbf{0}$$
$$= \bigcup^{\infty} \{ 0 \}^{j-1} \times (0, \infty) \times \{ 0 \}^{\infty} \cup \{ \mathbf{0}_{\infty} \},$$

Leads to a sequence of spaces:

j=1

÷

 $\underbrace{\mathbb{R}^{\infty}_{+} \setminus \mathbb{F}^{(0)}}_{\text{remove } \mathbf{0}_{\infty}} \supset \qquad \mathbb{R}^{\infty}_{+} \setminus \mathbb{F}^{(1)} \supset \qquad \underbrace{\mathbb{R}^{\infty}_{+} \setminus \mathbb{F}^{(2)}}_{\text{remove } 2\text{-dim faces}} \supset \dots$

Suppose,

- $\mathbb{S} = \mathbb{R}^{\infty}_+;$
- $X = (X_1, X_2...)$ has iid components with each X_i having a regularly varying tail with scaling function b(t). Means:

$$tP[X_j > b(t)x] \to \nu_{\alpha}(x, \infty) = x^{-\alpha}, \quad t \to \infty, \, \alpha > 0,$$

and b(t) satisfies,

$$b(t) = \left(\frac{1}{P[X_j > \cdot]}\right)^{-1}(t), \quad P[X_j > b(t)] \sim \frac{1}{t}.$$

Then as $t \to \infty$, for $j \ge 1$

$$tP[\mathbf{X}/b(t^{1/j}) \in \cdot] \to \mu^{(j)} \text{ in } \mathbb{M}(\mathbb{R}^{\infty}_+ \setminus \mathbb{F}^{(j-1)})$$

and $\mu^{(j)}$ concentrates on $\mathbb{F}^{(j)} \setminus \mathbb{F}^{(j-1)}$, the sequences with *exactly j* positive components.

Recent extensions:

1. J. Roy extends this to study HRV for moving averages of the form

$$X_n = \sum_{j=0}^{\infty} \psi_j Z_{n-j}, \qquad n \in \mathbb{Z}$$

where $\{Z_n\}$ is a doubly infinite positive iid sequence with regularly varying marginals and $\psi_j \ge 0$.

As a random element of the CSMS $\prod_{i=-\infty}^{\infty}\mathbb{R}$ of double sided sequences,

- $\boldsymbol{X} = \{X_n\}$ is regularly varying and
- an infinite number of regular variation properties coexist.
- 2. Alternative method of counteracting tendency toward asymptotic independence by gradually increasing dependence at the correct rate. Related to
 - Hüsler–Reiss distributions and
 - CEV model.

4. Challenges.

- Practical?
 - Limitations of asymptotic methods: rates of convergence?
 - Instead of estimating a risk probability as 0, estimate is a very small number.
- Need for more formal inference for estimation including confidence statements.
- General HRV technique requires knowing the support of the limit measure. Estimate support?
- High dimension problems? How to sift through different possible subcones? There could be a sequence of cones with regular variation on each. How to teach a computer to find the cones?
- How to go from standard to more realistic non-standard case where components not scaled the same; still some inference problems.

5. Don't know! Coming year.

- Core issues (even in 2 dimensions):
 - What does is mean for

$$P[X=i, Y=j] =: f_{ij}$$

to be multivariate regularly varying (have a power law)?

- Embedding problem: Assuming we know what it means for f_{ij} to be regularly varying, when does there exist a regularly varying function U(x, y) of continuous variables such that

$$f_{ij} = U(i,j)?$$

(Always true in one dimension.)

– When does this imply the measure

 $P[(X,Y)\in\,\cdot\,]$

is regularly varying?

Note: The integral of a regularly varying function u(s,t)

$$U(x,y) = \int_0^x \int_0^y u(s,t) ds dt,$$

is not necessarily regularly varying. (Always true in one dimension.)

Cornell
Risk Estimation
Asy Indep
RV on Cones; CSMS
Challenges
Help
Title Page
Close
Quit

- Tauberian theorems in higher dimensions are known in restricted circumstances. Needed for network models where limiting frequencies are given in terms of generating functions.
- What is the origin of heavy tails? For reasonable models, presumably, as $n \to \infty$,

$$\frac{N_n(i,j)}{n} \to f_{i,j}$$
$$\frac{\operatorname{CT}_n}{n} \to \operatorname{CT}_\infty =: \sum_{(i,j)} f_{i,j} \epsilon_{(i,j)}.$$

where

 $N_n(i,j) = \#\{\text{nodes at time } n \text{ with in-degree} = i, \text{out-degree} = j\}.$

- Generalize sexy martingale arguments used for undirected graphs to prove the limits exist for directed graphs.
- Find broad assumptions under which $f_{i,j}$ exhibit power law behavior. (Nobody really believes networks evolve like, eg, Krapivsky.)
- Use a martingale central limit theorem (?) to understand asymptotic normality of $\frac{N_n(i,j)}{n}$; gateway to inference?

- Continue to think about MLE or other forms of estimation as applied to network data.
- Understand the role of censoring in data such as *slashdot*.

Contents

Risk Estimation

Asy Indep

RV on Cones; CSMS

Challenges

Help

Cornell

