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1. Hidden Regular Variation.

(Joint with Filip Lindskog, Joyjit Roy.)

Goal:

e Find a framework in which multiple multivariate heavy tail prop-
erties exist simultaneously; improve risk estimates.

e Give significant examples illustrating this framework.
Given a risk vector
X =(Xy,...,Xq), d < o0,
estimate the probability of a risk region R
PIX € R]

where R is beyond the range of observed data. Solution based on
asymptotics: Assumption of multivariate heavy tails:
e Choose a state space; for example
— E =10,00) \ {0}, or
— E =(0,00).
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e Choose a scaling function b(t) — oo appropriate for E such that
that in M+ (E) s

e (), (DOA)

Issues:
e What is “—"7
e What is E? M, (E)?

— Traditionally used one point uncompactification and vague
convergence.

— Has major drawbacks.
— We now have a flexible framework in CSMS.

— E and the scaling function b(-) are always related.
e Specify v(-) and estimate.

Quasi-solution to estimation problem:

P[X € R] ~ %Q(R/i)(n)).
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But
e () may concentrate on a small region of the state space. CORNELL

e There may be simultaneous regular variation properties coexisting

under different choices of state space E and scaling functions b(-). Po—




Example:
CORNELL

d=2 and

R = (x,00] = (21, 00] X (22, 0]
Risk Estimation
and

P[X ER] :P[Xl >$1,X2 >.’1?2]

0

Risk contagion: Can two or more components of the risk vector X be
simultaneously large?

Ambiguity: Should we do the approximation assuming E = [0,00)? \
{0} or assuming E = (0, 00)?.



2. Asymptotic independence
e If E=0,00)\ {0}, asymptotic independence means
v({x:x >y, x;>y;),}) =0, v >0y >0 (Asylndep)

for all 1 <i < j < d and thus such an asymptotic model has no
risk contagion since we estimate

P] two or more components of X are large simultaneously | = 0.

e Can we improve on this asymptotic method?

2.1. (AsyIlndep) not uncommon:
e X has independent components.

e Gaussian copula model: Heavy tailed marginals but Gaussian de-

pendence with
corr(X;, X;) = p(i, j) < 1.

o Let U ~U(0,1) and

X (hto)

CORNELL

Risk Estimation

Asy Indep

RV on Cones; CSMS

Challenges
Help




2.2. Standard Example.
For d=2: If X = (X3, X5) and X; L Xy, X, X5 iid with
PIX;>yl=y"" y>1
e Then for 1 > 0, 9 > 0, as n — 00

nP[X; > nx) — x; 7, i=1,2,
nP[X; > nxy, Xy > nas] — 0,

so X is regularly varying on E = [0,00)? \ {0} with index 1 and
limit measure concentrating on the axes.

e Also for x1 > 0,29 > 0,

VnP[X, > \/nx] - V/nP[Xy > /nao| =
TLP[Xl > \/ﬁxl,Xg > \/ﬁl‘g] — L

$1$2’

so X is regularly varying on Ey = (0,00)%\ {0} with index 2 and
limit measure giving positive mass to (x, oo|.
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Conclude for this example:

e X is regularly varying on E = [0,00) \ {0} with index 1
(scale by n) and limit measure concentrating on lines through {0},
and giving zero mass to (0, 00).

e X is regularly varying on Eq = (0, co) with index 2
(scale by y/n) and the limit measure gives positive mass to (0, 00).
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Some progress (in low dimensions):
: CORNELL
e Detection.

Estimation.

Risk Estimation
e Non-parametric technique using rank methods detects hidden struc- —

Asy Indep
ture.
e Framework applicable to R, C10, 1], D[0, 1]. Challenges
e Examples where an infinite number of regular variation properties Fielp

coexist

— iid with regularly varying marginals.

— Lévy processes with regularly varying Lévy measure.

Framework includes classical theory as well as the conditional
extreme value model (condition on one component of a vector
being large).




3. Framework: Regular variation on cones in CSMS
(with Lindskog & Roy).

Context: Consider random element X of a complete separable metric
space S with an origin and scaling operation: Examples of S:

e R ; X is a random variable,
° R‘i; X is a random vector,
e R X is a random sequence,

e D0, 1]=cadlag space; X is a cadlag process such as a Lévy pro-
cess.

Suppose F; C S closed (cone) containing 0 and define the TABOF
space
S]F1 = S \ Fl-
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— The random element X € S has a distribution with a regularly
varying tail on Sg, if 3b(¢) T co and measure v #Z 0 on Sg, such that

tp[% € ] S (), in M*(Sk,).

[Must define topology on M*(Sp, ), the measures on Sg, that are finite
on sets at positive distance from Fi; fairly routine.]

Let Fy be another closed (cone) containing 0 and set
S]FlU]FQ — S\ (Fl U Fl)

— The random X has a distribution with hidden regular variation on
Sk, ur, if there is regular variation on Sp, AND if 3b;(¢) T oo and a
measure v (-) #Z 0 on Sp,_r, such that

o B RT C

AND
b(t)/bi(t) — o0

(which makes the behavior on Sg, g, hidden).
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3.0.1. Example: iid on RY.
S=RY, F=FY, j >0, where

F(]) :{X = (1’1,1’2’ ...) € Ri_o . Zexj(07oo) S .]}
j=1

={x : at most j components > 0}.
50
FO ={0.}
F) —axes in RZ° through 0, including O

:LJ{op—lx(oﬂn)x{OF”u{OwL

Leads to a sequence of spaces:

RP\F® >  R®\F» o5  RP\F® 5
—— ——
remove 04 remove axes remove 2-dim faces
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Suppose,
e S=R;

e X = (X1, X5...) has iid components with each X; having a reg-
ularly varying tail with scaling function b(t). Means:

tP[X; > b(t)x] = vo(x,00) =27, t—= 00, >0,

and b(t) satisfies,

~ | =

) = (g =) 0PI > b0 ~

Then as t — oo, for j > 1
tP[X /b(t'7) € ] — pb) in M(RT \ FU~Y)

and p9) concentrates on FW \ FU~Y  the sequences with ezactly j
positive components.
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Recent extensions:

1. J. Roy extends this to study HRV for moving averages of the form CORNELL
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Xo=> $Znj, neL
=0

Asy Indep
where {Z,,} is a doubly infinite positive iid sequence with regularly RV on Cones; CSMS
varying marginals and ; > 0.
As a random element of the CSMS [ __ R of double sided se- e
quences,

e X = {X,} is regularly varying and
e an infinite number of regular variation properties coexist.

2. Alternative method of counteracting tendency toward asymptotic
independence by gradually increasing dependence at the correct
rate. Related to

e Hiisler—Reiss distributions and
e CEV model.




4.

Challenges.

Practical?

— Limitations of asymptotic methods: rates of convergence?

— Instead of estimating a risk probability as 0, estimate is a
very small number.

Need for more formal inference for estimation including confidence
statements.

General HRV technique requires knowing the support of the limit
measure. Estimate support?

High dimension problems? How to sift through different possi-
ble subcones? There could be a sequence of cones with regular
variation on each. How to teach a computer to find the cones?

How to go from standard to more realistic non-standard case
where components not scaled the same; still some inference prob-
lems.
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5.

Don’t know! Coming year.

e Core issues (even in 2 dimensions):
— What does is mean for
to be multivariate regularly varying (have a power law)?

— Embedding problem: Assuming we know what it means for
fi; to be regularly varying, when does there exist a regularly
varying function U(z,y) of continuous variables such that

(Always true in one dimension.)
— When does this imply the measure
PI(X,V) €]

is regularly varying?
Note: The integral of a regularly varying function u(s,t)

Ulz,y) = /Oz /Oy u(s, t)dsdt,

is not necessarily regularly varying. (Always true in one di-
mension.)
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— Tauberian theorems in higher dimensions are known in re-
stricted circumstances. Needed for network models where
limiting frequencies are given in terms of generating func-
tions.

e What is the origin of heavy tails? For reasonable models, presum-
ably, as n — oo,

Na(i, )
n

CT,
n

= fij

— CTOO = Zflyje(l,])
(4.4)

where

N, (i,7) = #{nodes at time n with in-degree = i, out-degree = j}.

— Generalize sexy martingale arguments used for undirected
graphs to prove the limits exist for directed graphs.

— Find broad assumptions under which f; ; exhibit power law
behavior. (Nobody really believes networks evolve like, eg,

Krapivsky.)
— Use a martingale central limit theorem (?) to understand
asymptotic normality of w; gateway to inference?
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e Continue to think about MLE or other forms of estimation as
applied to network data.

e Understand the role of censoring in data such as slashdot.
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