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1. Mathematical framework

• Finished a survey giving proper mathematical framework in Lind-
skog, Resnick, and Roy (2014). Final submitted.

• Allows for flexible mathematical consideration of multivariate reg-
ular variation problems with multiple asymptotic regimes simul-
taneously existing.

• Ideal for handling risk contagion in presence of asymptotic in-
dependence. Also suitable for seeking multiple regular variation
regimes in presence of asymptotic full dependence.
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• Returns are multivariate
heavy tailed.

• Limit measure concentrates
on diagonal.

• Other examples

– Xchr (Aus$, Chinese).

– (Exxon, Chevron).

– Tech sector returns? Lagged
variables (Davis).
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x

∞

0

• If limit measure concentrates
on the diagnonal,
no mass in blue region

{(u, v) : u > v + x}.

• Wrong asymptotics?

Ongoing (Amy Willis, Bikram Das)

• Apply framework to cases other than asymptotic independence.

• Find data diagnostics.

• Dimension issues beyond 2.

• Discovery of regions where the limit measure has zero mass.
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2. Model generation and diagnostic

2.1. A general construction of a standardized distribution

• On Rd
+, delete closed cone F .

• Write
ℵF = {x : d(x, F ) = 1}.

Take
Θ re in ℵF , R ∼ Pareto.

• Set
X = RΘ

and X ∈ MRV on Rd
+ \ F .
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• Can apply to multiple
regimes by

– first deleting F1 (eg, origin)

– then deleting F1 ∪ F2;
ie delete 2nd cone (eg, axes).

• How do the 2 regimes interact? Statistically identifiable? Das
and Resnick (2014).
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2.2. Model Detection Diagnostics

1. Reduction to one dimension:

• X ∈ MRV iff aX1 ∨ bX2 ∈ RV (α) for all a ≥ 0, b ≥ 0.

• X ∈ HRV iff aX1 ∧ bX2 ∈ RV (α0) for a ∧ b > 0.

[Hint: Cannot check ∀a, b; works in higher dimensions.]

2. Use GPOLAR to convert to the CEV model and then use CEV di-
agnostics (Das and Resnick, 2011) using the Hillish and Pickand-
sish plots.

3. CEV model is of the form: Sppse (ξ, η) ∈ R+ × R is a random
vector and

• ∃b(t)→∞,
• ∃ limit measure µ

such that

tP

[(
ξ

b(t)
, η

)
∈ ·

]
→ µ(·).

This is the form of convergence after coordinate transformation
via GPOLAR.

4. Hillish statistic applied to both (ξ, η) and (ξ,−η) detects this.
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One dimensional analysis: BU (duration, rate).

BU browser downloads; duration = duration of download; rate = file
size/duration.
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Hillish and CEV analysis for HRV.
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Ongoing:

• Extensions to higher dimensions.

• Extensions to other deleted cones.

• More data examples.
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3. Growing preferential attachment networks.

• Directed edge network grow according to preferential attachment
postulates (Samorodnitsky, Resnick, Towsley, Davis, Willis, and
Wan, 2014).

• Each node has (in-degree, out-degree) evolving with n = 1, 2, . . . .

• At nth stage, the proportion of nodes with (in-degree, out-degree) =
(i, j) is

p
(n)
ij

n→∞→ pij.

• {pij} is the mass function of a heavy
tailed measure whose limit measure
has a density that can be explicitly
computed as a function of input pa-
rameters.

• General and powerful Tauberian theo-
rem relating Laplace transform of (in-
degree, out-degree) to the multivari-
ate heavy tail (Resnick and Samorod-
nitsky, 2014).
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• Algorithms (Atwood, Roy) to simulate the network growth.

• Provides test bed data for statistical methods where we know the
answers (because we simulated the model). More from Joyjit.

Ongoing:

• Model error: Observe or infer frequencies p
(n)
ij but try to infer

something about heavy tailed structure of

lim
n→∞

p
(n)
ij = pij

for i→∞ and j →∞.

• Theory for multivariate heavy tailed mass functions as opposed
to their measures.

• Data is node based and not iid.

• Properties of estimators. Apply MG’s and MG CLT.

• Simplify analysis using embedding in birth processes which are
conditionally Poisson.

• Apply the Tauberian method to other models.

• Possibility of more than just 2 attributes per node (eg, friend, foe,
strength of opinion).
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• Other graceful methods to handle censoring.

• Neighborhood and community discovery (Davis, Wan, Zhang, Towsley,
Jiang).
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Description of Datasets

Real-world network data

• Directed, signed social
network data from technology
news website SLASHDOT

• Dataset was provided to us by
Zhi-li Zhang

• Conjectured to have
“scale-free power-law like”
behavior

• Main interest is to study
multivariate tail behavior

Simulated data

• Preferential Attachment
Model

• Yields directed network where
asymptotically in-degrees and
out-degrees exhibit power-law
behavior with known
tail-exponents

• Can be used to benchmark
our methods

• We have developed a method
to simulate from this model in
O(N) time where N is the
number of nodes
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Problems in tail-index estimation

• Usually power-law behavior is only asymptotic or may only be
exhibited after a cutoff

• Forgoing the discrete assumption to fit continuous models lead to
erros due to approximation

• Data might be also be censored as in the case of SLASHDOT

• One popular package is poweRlaw package but the methods can
be improved upon

• Slope based methods are inaccurate

• Other methods require tuning to yield credible estimates

Our Goal
Find a statistical model for the data and an automated method to fit
it that does not require manual threshold selection
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Using weighted linear regression

• Need to model dependence and the fact that the coefficients are
constrained

• Let Yi be the number of nodes with degree i. Assume

• Yi ∼ Multinomial(N, π) where N is the number of nodes
• πi = Ci−α where α is the tail-index for i greater than threshold K

• Use the multivariate normal approximation to the multinomial
and the delta method to obtain the approximate distribution for
log Yi

• log Yi ∼ N
(

log(1−
∑
i<K

πi)− log ζ(K,α)− α log i, σi(α)

)
for

i ≥ K, where ζ(K,α) =
∑
i≥K i

−α

• Fit a model with parameters (π1, . . . , πK−1, α) using iteratively
reweighted least squares and choose K via a goodness of fit
criterion

• Fast and reliable but iterative method to obtain estimate is
unstable sometimes
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Comments

SLASHDOT data analysis of
in-degree
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Using Likelihood based methods
• Let Xi, i = 1, 2, . . . , N be the degrees of the N nodes in the

graph. Assume Xi are iid and P[X = j|X > K] = j−α

ζ(K,α) for

some threshold K. Recall ζ(K,α) =
∑
i≥K i

−α.

• Likelihood equation does not have a closed form solution for the
maximum

• We also modify the standard likelihood to deal with censored
data points

• For every K, we find a near optimal solution to the MLE, α̂K , by
carefully approximating the ζ-function

• Choose αK which minimizes the Kolmogorov-Smirnov distance
between the tail empirical distribution thresholded at K and our
theoretical distribution

• This is nothing but a modified version of the Hill Estimator

• Method corresponds well to the traditional method of picking out
approximate linear portion of Hill Plots

• Can iteratively improve estimate by improving approximation to
ζ but the process is slow
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Comments

SLASHDOT data analysis of
out-degree
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Performance Comparison

• Both methods yield estimates which agree with each other

• When the true parameters are known, they outperform
traditional methods

• Both methods yield ready made measures of uncertainty in
estimation
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Towards Multivariate Methods

• No easily and reliably estimable statistical model is known

• Traditional methods only work when tail-indexes of both
variables are the same which is rarely the case

• Extending the weighted regression method with terms to account
for tail-dependence seem to work but still requires manual tuning

• Estimating measures like angular densities after standardizing
marginals via rank-transforms also seem promising but again is
not yet fully automated

• Both methods seem to be sensitive to model parameter selection

• Still qualitatively as well quantitatively, if we were to trust our
not that robust multivariate methods, we can see distinct
differences between the SLASHDOT dataset and simulated datasets
from the model

• Simply cannot chalk-off these discrepancies to the fact that the
SLASHDOT out-degrees are bounded
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Caveat
SLASHDOT data
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